
August 2023

IT & DATA SCIENCE 

Security Best 
Practices for AI 
infrastructure - 
RBAC



Introduction


How do we use it?


Table of contents

1


2-7

1/7

In the ever-evolving landscape of data science, containers have emerged as an indispensable tool, 
revolutionizing how data scientists work. The adoption of containers has skyrocketed, and for good reason – 
many popular data science tools are now built and optimized for containerization. TensorFlow, PyTorch, 
Keras, and a plethora of pre-trained models are just a few examples of some of the powerful tools available, 
within containers that streamline the data science process.



One name that stands out in the world of container orchestration is Kubernetes. As the de facto standard 
for managing containers, Kubernetes has become an essential part of data scientists' toolsets. In 2021, a 
report from Run:ai  that 42% of respondents said they used Kubernetes for AI/ML workflows. 
And, last year Red Hat  that that number had increased to 65%, with this year expected to be even 
higher.



However, while empowering data scientists, security concerns can arise. So, how can we ensure that 
containers and Kubernetes are used in a way that doesn't compromise the integrity of the system or the 
privacy of data? The security team recognizes that researchers should be restricted to their designated 
containers without any ability to tamper with system components or interfere with other researchers' 
workspaces. Unauthorized access to sensitive data and shared resources must be prevented as well.



Introducing Kuberenetes RBAC - Kubernetes Role-Based Access Control (RBAC) is a security mechanism 
that enables administrators to define and manage fine-grained access permissions for users or groups 
within a Kubernetes cluster. RBAC allows for the assignment of specific roles to users, which determines 
their access rights to resources and operations within the cluster. By implementing RBAC, administrators 
can ensure that only authorized personnel have the appropriate privileges to perform certain actions, 
reducing the risk of unauthorized access and potential security breaches. This helps in maintaining a secure 
and controlled environment, ensuring that each user has precisely the necessary permissions to perform 
their tasks while restricting access to sensitive resources, ultimately enhancing the overall security and 
stability of the Kubernetes cluster.

discovered
found

Introduction

IT & DATA SCIENCE | Security Best Practices for AI infrastructure - RBAC

https://pages.run.ai/ai-infrastructure-survey-report-2021
https://www.altoros.com/blog/machine-learning-constitutes-65-percent-of-kubernetes-workloads/


Let's say we have 2 data scientists that need to share the resources on the cluster, Bob and Alice, but we 
want to make sure that they can’t access each other's containers and data.

These are the steps you need to take to ensure that Bob and Alice can run their experiments on the cluster, 
each having access only to his containers and data:

How do we use it?

2/7

Create a namespace for each user

Create a service account, role and role-binding for each user (the service account defines the user, the 
role defines the scope of actions, and the role binding simply binds the user to the role):

First we will create the sa-role-rolebinding-bob.yml for bob:

1

2

kubectl create ns bob  
namespace/bob created

kubectl create ns alice  
namespace/alice created

vi sa-role-rolebinding-bob.yml  

v1 
ServiceAccount 

bob-user 
bob 

Role 
rbac.authorization.k8s.io/v1 

bob-user-full-access 
bob 

""  "extensions"  "apps"  "batch"
*

*

RoleBinding 
rbac.authorization.k8s.io/v1 

bob-user-view 
bob 

ServiceAccount 
bob-user 

bob 

rbac.authorization.k8s.io 
Role 

bob-user-full-access

--- 

--- 

 - 

--- 

- 

apiVersion: 
kind: 
metadata: 
  name: 
  namespace: 

kind: 
apiVersion: 
metadata: 
  name: 
  namespace: 
rules: 
 apiGroups: 
    resources: " "
    verbs: " "

kind: 
apiVersion: 
metadata: 
  name: 
  namespace: 
subjects: 
  kind: 
    name: 
    namespace: 
roleRef: 
  apiGroup: 
  kind: 
  name: 

[ , , , ] 
[ ] 

[ ] 

IT & DATA SCIENCE | Security Best Practices for AI infrastructure - RBAC



3/7

Create a namespace for each user3

vi sa-role-rolebinding-alice.yml  

v1 
ServiceAccount 

alice-user 
alice  

Role 
rbac.authorization.k8s.io/v1 

alice-user-full-access 
bob 

"", "extensions", "apps", "batch"
"*"

"*"

RoleBinding 
rbac.authorization.k8s.io/v1 

alice-user-view 
alice 

ServiceAccount 
alice-user 

alice 

rbac.authorization.k8s.io 
Role 

alice-user-full-access

--- 

--- 

  -

--- 

 - 

apiVersion: 
kind: 
metadata: 
  name: 
  namespace: 

kind: 
apiVersion: 
metadata: 
  name: 
  namespace: 
rules: 

 apiGroups: 
    resources: 
    verbs: 

kind: 
apiVersion: 
metadata: 
  name: 
  namespace: 
subjects: 
 kind: 
    name: 
    namespace: 
roleRef: 
  apiGroup: 
  kind: 
  name: 

[ ] 
[ ] 

[ ]  

kubectl apply -f sa-role-rolebinding-alice.yml  

serviceaccount/alice-  created 
role.rbac.authorization.k8s.io/alice- - -access created 
rolebinding.rbac.authorization.k8s.io/alice- -  created

user
user full

user view

kubectl apply -f sa-role-rolebinding-alice.yml  

serviceaccount/alice-  created 
role.rbac.authorization.k8s.io/alice- - -access created 
rolebinding.rbac.authorization.k8s.io/alice- -  created

user
user full

user view

IT & DATA SCIENCE | Security Best Practices for AI infrastructure - RBAC



4/7

Create a ‘secret’ for your service account (we will need this secret for the next step, to create a user-
token for the kubernetes config file):

Create the following environment variables and then the kubernetes config file for each user:5

4

export

export
export

export

export

 
'{{.data.token}}'  base64 

 
 '{{range .contexts}}{{if eq 

.name "''' '''"}}{{ index .context "cluster" }}{{end}}{{end}}') 
 '{{range .clusters}}{{if eq .name 

"''' '''"}}"{{with index .cluster "certificate-authority-data" }}{{.}}{{end}}"{{ end }}{{ 
end }}') 

 '{{range .clusters}}{{if eq .name 
"''' '''"}}{{ .cluster.server }}{{end}}{{ end }}')

USER_TOKEN_VALUE=$(kubectl -n bob get secret/bob-user-sa-token -o=go-
template= | --decode) 

CURRENT_CONTEXT=$(kubectl config current-context) 
CURRENT_CLUSTER=$(kubectl config view --raw -o=go-template=

CLUSTER_CA=$(kubectl config view --raw -o=go-template=

CLUSTER_SERVER=$(kubectl config view --raw -o=go-template=

${CURRENT_CONTEXT}

${CURRENT_CLUSTER}

${CURRENT_CLUSTER}

kubectl -n bob create  -f - <<EOF 
 v1 

Secret 

 bob-user-sa-token 

 bob-user 
 kubernetes.io/service-account-token 

EOF  

secret/bob-user-sa-token created

apiVersion:
kind: 
metadata: 
  name:
  annotations: 
    kubernetes.io/service-account.name:
type:

kubectl -n alice create  -f - <<EOF 
 v1 

 Secret 

 alice-user-sa-token 

     alice-user 
 kubernetes.io/service-account-token 

EOF  

secret/alice-user-sa-token created

apiVersion:
kind:
metadata: 
  name:
  annotations: 

kubernetes.io/service-account.name:
type:

IT & DATA SCIENCE | Security Best Practices for AI infrastructure - RBAC



5/7

Now create the kubernetes config file (the kubernetes config file is the file that each user will use 
to authenticate to the Kubernetes api server):

Now, let's do the same for alice:

4

cat << EOF > bob-kubeconfig 
v1 

Config 
${CURRENT_CONTEXT} 

${CURRENT_CONTEXT} 

     ${CURRENT_CONTEXT} 
    bob-user 
  bob 

 ${CURRENT_CONTEXT} 
  
     ${CLUSTER_CA} 
    ${CLUSTER_SERVER} 

bob-user 
  
   ${USER_TOKEN_VALUE} 
EOF

apiVersion: 
kind: 
current-context: 
contexts: 

name: 
  context: 

cluster:
user: 

  namespace: 
clusters: 

name: 
cluster: 
certificate-authority-data:
server: 

users: 
name: 
user: 
 token: 

- 

-

- 

export

export
export

export

export

 
'{{.data.token}}'  base64 

 
 '{{range .contexts}}{{if eq 

.name "''' '''"}}{{ index .context "cluster" }}{{end}}{{end}}') 
 '{{range .clusters}}{{if eq .name 

"''' '''"}}"{{with index .cluster "certificate-authority-data" }}{{.}}{{end}}"{{ end }}{{ 
end }}') 

 '{{range .clusters}}{{if eq .name 
"''' '''"}}{{ .cluster.server }}{{end}}{{ end }}')

USER_TOKEN_VALUE=$(kubectl -n alice get secret/alice-user-sa-token -o=go-
template= | --decode) 

CURRENT_CONTEXT=$(kubectl config current-context) 
CURRENT_CLUSTER=$(kubectl config view --raw -o=go-template=

CLUSTER_CA=$(kubectl config view --raw -o=go-template=

CLUSTER_SERVER=$(kubectl config view --raw -o=go-template=

${CURRENT_CONTEXT}

${CURRENT_CLUSTER}

${CURRENT_CLUSTER}

IT & DATA SCIENCE | Security Best Practices for AI infrastructure - RBAC



6/7

Next, we will create the kubernetes config file for alice:4

cat << EOF > alice-kubeconfig 
v1 

Config 
${CURRENT_CONTEXT} 

${CURRENT_CONTEXT} 

     ${CURRENT_CONTEXT} 
    alice-user 
  alice 

 ${CURRENT_CONTEXT} 
  
     ${CLUSTER_CA} 
    ${CLUSTER_SERVER} 

alice-user 
  
   ${USER_TOKEN_VALUE} 
EOF

apiVersion: 
kind: 
current-context: 
contexts: 

name: 
  context: 

cluster:
user: 

  namespace: 
clusters: 

name: 
cluster: 
certificate-authority-data:
server: 

users: 
name: 
user: 
 token: 

- 

-

- 

We are all done! The bob-kubeconfig file should be shared with user bob, and the alice-kubeconfig 
file should be shared with user alice.



To verify that it works, lets use the bob-kubeconfig:

Copy the bob-kubeconfig to your .kube directory

Export the KUBECONFIG environment variable to point to bob-kubeconfig

Now, lets try to list the pods in the bob namespace:

6

cp bob-kubeconfig .kube

export KUBECONFIG=~ bob-kubeconfig/.kube/

kubectl  pods -n bob 
No resources found  bob .

get
in namespace

IT & DATA SCIENCE | Security Best Practices for AI infrastructure - RBAC



7/7

We were able to list the pods and get a response from the apiserver (that there are no pods in this 
namespace).

Now, lets try to list the pods in the alice namespace:

We weren’t able to list the pods in the alice namespace, as we only have permissions to the bob 
namespace!



To summarize, Kubernetes RBAC offers significant benefits to data scientists by providing fine-
grained control over access to cluster resources and ensuring data security. With RBAC, data 
scientists can collaborate seamlessly, streamline operations, and focus on their work without 
concerns about unauthorized access or potential disruptions.

4

kubectl  pods -n alice 
 server (Forbidden): pods  forbidden: User  cannot 

list resource   API    the  

get
Error from

in group in namespace
is "system:serviceaccount:bob:bob-user"

"pods" "" "alice"

Run:ai is an AI management platform for MLOps, Data Science, and DevOps teams. In addition to helping 
these teams access and utilize their GPU resources more effectively, it also has a powerful set of features 
that can abstract infrastructure complexities and simplify the process of training and deploying models. 
With or without a GPU shortage, Run:ai enables data scientists to focus on innovation without having to 
worry about resource limitations.

About Run:ai

Read more about how Run:ai supports 
data scientists here

www.run.ai/runai-for-data-science

IT & DATA SCIENCE | Security Best Practices for AI infrastructure - RBAC

https://www.run.ai/platform
https://www.run.ai/runai-for-data-science

	Benchmarking Report
	Benchmarking Report-1
	A4 - 78
	A4 - 79
	A4 - 80
	A4 - 81
	A4 - 82
	A4 - 83

