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When it comes to training big models or handling large datasets, relying on a single node might not be 
sufficient and can lead to slow training processes. This is where distributed training comes to the rescue. 
There are several incentives for teams to transition from single-node to distributed training. Some 
common reasons include:

Introduction

Faster Experimentation

 

In research and development, time is of the essence. Teams often need to accelerate the training 
process to obtain experimental results quickly. Employing multi-node training techniques, such as data 
parallelism, helps distribute the workload and leverage the collective processing power of multiple 
nodes, leading to faster training times.

Large Batch Sizes

 

When the batch size required by your model is too large to fit on a single machine, data parallelism 
becomes crucial. It involves duplicating the model across multiple GPUs, with each GPU processing a 
subset of the data simultaneously.

Large Models

 

In scenarios where the model itself is too large to fit on a single machine's memory, model parallelism is 
utilized. This approach involves splitting the model across multiple GPUs in various ways, with each 
GPU responsible for computing a portion of the model's operations. By dividing the model's parameters 
and computations, model parallelism enables training that was not possible before (e.g. training GPT-4) 
on machines with limited memory capacity.



Depending on your use case and technical setting, you will need to choose between different strategies, 
which will start your distributed training journey. In this blogpost, we will discuss some common and 
SotA strategies and evaluate in which scenarios you might want to consider them.

IT & DATA SCIENCE | Parallelism Strategies for Distributed Training 2/8



There are different parallelism strategies, each relevant for different use cases. Each approach has its 
own advantages and is suitable for different scenarios. You can either distribute the training data across 
multiple nodes or GPUs or divide the model itself in various ways across multiple nodes or GPUs. The 
first approach is particularly useful when the batch size used by your model is too large to fit on a single 
machine or when you aim to speed up the training process. The second strategy becomes handy if you 
want to train a big model on machines with limited memory capacity. Furthermore, both strategies can 
be combined to distribute data across multiple instances of the model, with each model instance running 
on multiple nodes or GPUs.

In data parallelism, you make copies of the model and distribute them to different processes or 
machines. It involves duplicating the model across multiple GPUs, where each GPU processes a subset 
of the data simultaneously. Once done, the results of the models are combined and training continues as 
normal. This approach is particularly useful when the batch size used by your model is too large to fit on 
a single machine, or when you aim to speed up the training process.

 

Implementations�

� : This implementation in PyTorch allows you to distribute the data across 
multiple GPUs on a single machine. It replicas the model in every forward pass and simplifies the 
process of utilizing multiple GPUs for training�

� : DDP enables training models across multiple processes or 
machines. It handles the communication and synchronization between different replicas of the 
model, making it suitable for distributed training scenarios. It uses ‘multi-process parallelism, and 
hence there is no  across model replicas’�

�  MirroredStrategy is a TensorFlow API that supports data parallelism on 
a single machine with multiple GPUs. It replicates the model on each GPU, performs parallel 
computations, and keeps the model replicas synchronized�

�  This TensorFlow strategy extends MirroredStrategy to 
distribute training across multiple machines. It allows for synchronous training across multiple 
workers, where each worker has access to one or more GPUs�

�  TPUStrategy is designed specifically for training models on Google's Tensor 
Processing Units (TPUs). It replicates the model on multiple TPUs and enables efficient parallel 
computations for accelerated training.

Pytorch Data Parallel (DP)

Pytorch Distributed Data Parallel (DDP)

GIL contention
Tensorflow MirroredStrategy:

Tensorflow MultiWorkerMirroredStrategy:

Tensorflow TPUStrategy:

Side note: Parallelism techniques are still an active research topic in the field, continuously growing with each new 
technique and library for implementation purposes. In this blog post, we will cover some of the most common libraries and 
techniques in the current implementation space. Please feel free to reach out to us if you want to see different approaches 
and libraries in the future.

Side note:  While DataParallel (DP) and DistributedDataParallel (DDP) are available in Pytorch, it is recommended to use 
DDP for its superior performance, as stated in the official PyTorch documentation. For a detailed overview of both settings, 
you can refer to the Pytorch documentation.

Parallelism Strategies

Data Parallelism

When to consider Data Parallelism

�

� Your model is fitting in a single GPU but you want to experiment faster�
�  Your model is fitting in a single GPU but you want to experiment with bigger batch sizes.
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https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html
https://pytorch.org/tutorials/beginner/dist_overview.html#torch-nn-parallel-distributeddataparallel
https://wiki.python.org/moin/GlobalInterpreterLock
https://www.tensorflow.org/guide/distributed_training#mirroredstrategy
https://www.tensorflow.org/guide/distributed_training#multiworkermirroredstrategy
https://www.tensorflow.org/guide/distributed_training#tpustrategy


Scaling up the capacity of deep neural networks has proven to be an effective method for improving the 
quality of models in different machine learning tasks. However, in many cases, when we want to go 
beyond the memory limitations of a single accelerator, it becomes necessary to develop specialized 
algorithms or infrastructure.Here comes pipeline parallelism. Pipeline parallelism is a method where each 
layer (or multiple layers) are placed on each GPU (vertically or layer-level). If it is applied naively, the 
training process will suffer from severely low GPU utilization as it is shown in Figure 1(b). The figure 
shows a model consisting of 4 layers spread across 4 different GPUs (represented vertically). The 
horizontal axis represents the training process over time, and it demonstrates that only one GPU is used 
at a time. For more information about pipeline parallelism, refer to this paper.

Figure 1: (a) An example neural network with sequential layers is partitioned across four accelerators. Fk 
is the composite forward computation function of the k-th cell. Bk is the back-propagation function, 
which depends on both Bk+1 from the upper layer and Fk. (b) The naive model parallelism strategy leads 
to severe under-utilization due to the sequential dependency of the network. (c) Pipeline parallelism 
divides the input mini-batch into smaller micro-batches, enabling different accelerators to work on 
different micro-batches simultaneously. Gradients are applied synchronously at the end.

Implementations�

�  Wraps nn.Sequential module. Uses synchronous pipeline parallelism�
�  A Pytorch extension library by Meta for high performance and large scale training with SoTA 

techniques�
�  A deep learning optimization library by Microsoft that ‘makes distributed training and 

inference easy, efficient, and effective’�
�  only internal implementation is availabl�
�  implemented as a layer over TensorFlow.

Pipe API's in Pytorch:
Fairscale:

Deepspeed:

Megatron-LM:
Mesh Tensorflow:

Pipeline Parallelism

When to consider Pipeline Parallelism

 

You have a sequential model with many layers (e.g. neural networks, transformers), which does not fit 
into the memory of a single machine.

Side note: It is required to use Pytorch to leverage Deepspeed and Fairscale.
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https://arxiv.org/abs/1811.06965
https://pytorch.org/docs/stable/pipeline.html#pipe-apis-in-pytorch
https://fairscale.readthedocs.io/en/latest/tutorials/pipe.html
https://www.deepspeed.ai/tutorials/pipeline/
https://github.com/NVIDIA/Megatron-LM
https://github.com/tensorflow/mesh


Scaling up the capacity of deep neural networks has proven to be an effective method for improving the 
quality of models in different machine learning tasks. However, in many cases, when we want to go 
beyond the memory limitations of a single accelerator, it becomes necessary to develop specialized 
algorithms or infrastructure.Here comes pipeline parallelism. Pipeline parallelism is a method where each 
layer (or multiple layers) are placed on each GPU (vertically or layer-level). If it is applied naively, the 
training process will suffer from severely low GPU utilization as it is shown in Figure 1(b). The figure 
shows a model consisting of 4 layers spread across 4 different GPUs (represented vertically). The 
horizontal axis represents the training process over time, and it demonstrates that only one GPU is used 
at a time. For more information about pipeline parallelism, refer to this paper.

Tensor parallelism is a technique that involves dividing the model horizontally. It assigns each chunk of 
the tensor to a designated GPU. During processing, each GPU independently works on its assigned 
chunk, allowing for parallel computation across multiple GPUs. This approach is often referred to as 
horizontal parallelism, as the splitting of the tensor occurs at a horizontal level. The results from each 
GPU are then synchronized at the end of the computation step, combining the individual outputs to form 
the final result. Tensor parallelism enables efficient utilization of multiple GPUs and can significantly 
accelerate the processing of large tensors in deep learning and scientific computing tasks.

Parameter Server Paradigm

Implementations�

�  RPC facilitates communication between the workers 
and the parameter server, enabling efficient synchronization of the model parameters during training�

�  In TensorFlow 2, pParameterServerStrategy distributes the 
training steps to a cluster that scales up to thousands of workers (accompanied by parameter 
servers). This configuration is known as asynchronous training.

Pytorch RPC-Based Distributed Training (RPC):

Tensorflow ParameterServerStrategy:

Implementations�

�  Tensor Parallelism (TP) is built on top of DistributedTensor (DTensor) and 
provides several Parallelism styles: Rowwise, Colwise and Pairwise Parallelism�

�
� only internal implementation is available

Pytorch Tensor Parallel:

DeepSpeed Tensor Parallelism for Inference of HuggingFace Model�
Megatron-LM: 

‍Special considerations from Tensor Parallelism (TP) requires a very fast 
network, and therefore it’s not advisable to do TP across more than one node. Practically, if a node has 4 
GPUs, the highest TP degree is therefore 4. If you need a TP degree of 8, you need to use nodes that 
have at least 8 GPUs.

HuggingFace documentation: 

Tensor Parallelism

When to consider Parameter Server

�

� You have a federated learning use-cas�
� You want to train your model with multiple workers asynchronously using spot instances. In this 

case, if some workers experience failures, it does not hinder the cluster from carrying out its tasks. 
This enables the cluster to train using instances that may occasionally become unavailable, such as 
preemptible or spot instances.
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https://arxiv.org/abs/1811.06965
https://pytorch.org/tutorials/intermediate/rpc_param_server_tutorial.html
https://www.tensorflow.org/tutorials/distribute/parameter_server_training
https://pytorch.org/docs/stable/distributed.tensor.parallel.html#tensor-parallelism-torch-distributed-tensor-parallel
https://www.deepspeed.ai/tutorials/automatic-tensor-parallelism/
https://github.com/NVIDIA/Megatron-LM
https://huggingface.co/docs/transformers/v4.17.0/en/parallelism


Sometimes, a data science task may require a combination of different training paradigms to achieve 
optimal performance. For instance, you might want to leverage two or more methods that we covered 
earlier to take advantage of their respective strengths. There are many possible combinations of these 
techniques. However, we will cover only 2 in this section, which are state-of-the-art. If you want to train a 
gigantic model with billions of parameters, you should consider one of these techniques:

ZeRO (Zero Redundancy Optimizer) is a memory optimization technology for large-scale distributed 
deep learning that greatly reduces the resources needed for model and data parallelism while enabling 
the training of models with billions to trillions of parameters. It eliminates memory redundancies by 
partitioning the model states, including parameters, gradients, and optimizer states, across data-parallel 
processes instead of replicating them. ZeRO consists of three main optimization stages: Optimizer State 
Partitioning (Pos or Stage 1), Add Gradient Partitioning (Pos+g or Stage 2), and Add Parameter 
Partitioning (Pos+g+p or Stage 3). Each stage progressively reduces memory requirements while 
maintaining similar communication volumes as data parallelism. For more information about ZeRO, 
please refer to 

Or watch a video here:

this paper.



 https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-
optimizations-enable-training-models-with-over-100-billion-parameters/

Fully Sharded Data Parallel (FSDP)

this blog.

 by the FairScale team at Meta is essentially a mix of tensor parallelism 
and data parallelism that aims to accelerate the training of large models by sharding the model's 
parameters, gradients, and optimizer states across data-parallel workers. Unlike traditional data 
parallelism, where each GPU holds a copy of the entire model, FSDP distributes these components 
among the workers. This distribution allows for more efficient use of computing resources and enables 
training with larger batch sizes and models. Additionally, FSDP provides the option to offload the 
sharded model parameters to CPUs when they are not actively involved in computations. By utilizing 
FSDP, researchers and developers can scale and optimize the training of their models with simple APIs, 
enabling more efficient training of extremely large models. For more information and implementation on 
Pytorch, please refer to 

Combination of Parallelism Techniques

The Zero Redundancy Optimizer (ZeRO)

Implementations�

�  Stage 1 implemented as ZeRO-1. Further stages are beeing implemented�
�  All 3 stages are implemented�
�  All 3 stages are implemented. Using ZeRO in a DeepSpeed model is quick and easy 

because all you need is to change a few configurations in the DeepSpeed configuration JSON. No 
code changes are needed.

Pytorch:
Fairscale:
DeepSpeed:

Implementations�

�  In the next releases, Pytorch is planning to make it easy to switch between DDP, ZeRO1, 
ZeRO2 and FSDP flavors of data parallelism in the new API. To further improve FSDP performance, 
memory fragmentation reduction and communication efficiency improvements are also planned�

�  The version of  is for historical references as well as for 
experimenting with new ideas in research of scaling techniques.

Pytorch:

Fairscale: FSDP on their Github repository

Fully Sharded Data Parallel
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https://arxiv.org/pdf/1910.02054v3.pdf
https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/tutorials/recipes/zero_redundancy_optimizer.html
https://fairscale.readthedocs.io/en/stable/api/nn/fsdp.html
https://www.deepspeed.ai/tutorials/zero/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://fairscale.readthedocs.io/en/stable/api/nn/fsdp.html
https://github.com/facebookresearch/fairscale#fsdp


Alpa: Automating Inter- and Intra-Operator Parallelism for 
Distributed Deep Learning
‍Alpa is a framework that automates the complex process of parallelizing deep learning models for 
distributed training. It focuses on two types of parallelism: inter-operator parallelism (e.g. device placement, 
pipeline parallelism and their variants) and intra-operator parallelism (e.g. data parallelism, Megatron-LM’s 
tensor model parallelism). Inter-operator parallelism assigns different operators in the model to different 
devices, reducing communication bandwidth requirements but suffering from device underutilization. Intra-
operator parallelism partitions individual operators and executes them on multiple devices, requiring heavier 
communication but avoiding data dependency issues. Alpa uses a compiler-based approach to 
automatically analyze the computational graph and device cluster, finding optimal parallelization strategies 
for both inter- and intra-operator parallelism. It generates a static plan for execution, allowing the distributed 
model to be efficiently trained on a user-provided device cluster.



Traditional methods of parallelism, such as device placement and pipeline parallelism, require manual 
design and optimization for specific models and compute clusters. Alpa simplifies this process by 
automatically determining the best parallelization plan for a given model, making it easier for ML 
researchers to scale up their models without extensive expertise in system optimization. It achieves this by 
leveraging heterogeneous mapping and conducting passes to slice the computational graph, partition 
tensors, and formulate an Integer-Linear Programming problem to optimize intra-operator parallelism.  
The inter-operator pass minimizes execution latency using a Dynamic Programming algorithm.  


Finally, the runtime orchestration generates execution instructions for each device submesh, allowing for 
efficient distributed computation. For more information, please refer to the documentation.

Implementations�

�  Built on top of a tensor computation framework  Alpa can automatically parallelize jax functions 
and run them on a distributed cluster. Alpa analyzes the computational graph and generates a distributed 
execution plan tailored for the computational graph and target cluster. The generated execution plan can 
combine state-of-the-art distributed training techniques including data parallelism, operator parallelism, 
and pipeline parallelism.The framework's code is also available as open-source. For more information 
about the strategy, please refer to  and  too.

Alpa: Jax.

this blogpost this presentation

Side note: The combined strategies are SoTA approaches, which need further investigation for various use cases.  
In the time of writing this blog, there has not been much comparison material available, possibly due to high costs of 
training such models and the approaches being new.
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https://alpa.ai/index.html
https://github.com/alpa-projects/alpa
https://jax.readthedocs.io/en/latest/index.html
https://ai.googleblog.com/2022/05/alpa-automated-model-parallel-deep.html
https://docs.google.com/presentation/d/1CQ4S1ff8yURk9XmL5lpQOoMMlsjw4m0zPS6zYDcyp7Y/edit#slide=id.g136a86a0982_0_0


In conclusion, distributed training is a powerful solution for handling large datasets and training big 
models. It offers several advantages, such as faster experimentation, the ability to work with large batch 
sizes, and the opportunity to train models that are too large to fit in a single machine's memory. 
Depending on your specific use case, you can choose from different parallelism strategies.



It's important to note that the field of parallelism techniques is still evolving, with new techniques and 
libraries being developed. While we have covered some of the most common and state-of-the-art 
strategies in this blog post, there may be other approaches and libraries worth exploring. The choice of 
parallelism technique depends on your specific use case, technical setting, and available resources.

Conclusion
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GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelis�

Pytorch documentation about Pipeline Parallelism


Implementing a Parameter Server Using Distributed RPC Framewor�

Scaling Distributed Machine Learning with the Parameter Serve�

Tensor Parallelism in Pytorc�

Fully Sharded Data Parallel: faster AI training with fewer GPU�

Model Parallelism by HuggingFac�

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-L�

Fit More and Train Faster With ZeRO via DeepSpeed and FairScal�

ZeRO & DeepSpeed: New system optimizations enable training models with over 100 billion parameters
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Read more about how Run:ai supports 
data scientists here

www.run.ai/runai-for-data-science

Run:ai is an AI management platform for MLOps, Data Science, and DevOps teams. In addition to helping 
these teams access and utilize their GPU resources more effectively, it also has a powerful set of features 
that can abstract infrastructure complexities and simplify the process of training and deploying models. 
With or without a GPU shortage, Run:ai enables data scientists to focus on innovation without having to 
worry about resource limitations.

About Run:ai

https://arxiv.org/abs/1811.06965
https://pytorch.org/docs/stable/pipeline.html
https://pytorch.org/tutorials/intermediate/rpc_param_server_tutorial.html
https://www.cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf
https://pytorch.org/docs/stable/distributed.tensor.parallel.html#tensor-parallelism-torch-distributed-tensor-parallel
https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://huggingface.co/docs/transformers/v4.17.0/en/parallelism
https://arxiv.org/pdf/2104.04473.pdf
https://huggingface.co/blog/zero-deepspeed-fairscale
https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
https://www.run.ai/runai-for-data-science
https://www.run.ai/platform
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