run:
OOOOOOOOOOO al

RESEARCH

Run:al Model Streamer:
Performance
Benchmarks

Authored by:
Ekin Karabulut, Noa Neria, Omer Dayan

L]
rugi RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS 2/20

The deployment of large language models (LLMs) presents a critical challenge in
optimizing inference efficiency, particularly due to the cold start problem—where models
take substantial time to load into GPU memory, thus impacting both user experience and
operational scalability. This whitepaper introduces the Run:ai Model Streamer, an open-
source solution designed to mitigate these latency issues by enabling concurrent reading
of model weights from the storage while directly streaming them into GPU memory. We
benchmark the Run:ai Model Streamer against the default loaders of vLLM as a baseline
(Safetensors Loader), as well as against Tensorizer, across different storage types,
including local SSDs and Amazon S3. The experiments demonstrate that the Run:ai Model
Streamer significantly reduces model loading times, thus reducing the cold start times
when starting the inference engine, even in cloud-based environments, while maintaining
compatibility with widely used safetensor format without the need for weight format
conversion. Our results highlight the importance of storage selection independently of any
model loading library and concurrent weight streaming in achieving efficient model
deployment at scale, offering key insights for machine learning practitioners looking into
enhancing LLM deployment performance.

https://github.com/run-ai/runai-model-streamer

[]
run: RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS

dl

Table of contents

Introduction
Methodology
Model Loading Overview
Run:ai Model Streamer
HuggingFace Safetensors Loader
Tensorizer
Where Loading Meets Inference Engines: Loading Weights with vLLM
Experiment Setup
Experiment Design
Experiment Results
Experiment #1: GP3 SSD
Experiment #2:102 SSD
Experiment #3: S3
Experiment #4: vLLM with Different Loaders
Discussion & Conclusion
Future Work
Appendix
Appendix A
Appendix B
Appendix C

Appendix D

3/20

10

10

1

13

14

15

17

18

18

18

19

20

[]
run: RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS 4/20

dl

Introduction

The increasing complexity of deploying large language models (LLMs) due to their dynamic nature in
production environments has magnified the importance of efficient model loading strategies. These models,
often requiring tens to hundreds of gigabytes of memory, pose significant challenges in terms of both latency
and resource utilization, especially when scaling services to meet unpredictable user demand. This is where
the cold start problem becomes particularly pronounced: the time it takes for a model to be loaded into GPU
memory can introduce substantial delays, severely impacting both the end-user experience and the
operational dynamics of machine learning systems.

Traditional approaches to loading models—sequentially transferring large tensor files from storage to CPU
memory and then to GPU—is inefficient and costly, particularly in auto-scaling environments where fast scale
up from idle states is critical. Therefore, a lot of corporations keep a lot of idle replicas most of the time not to
degrade the user experience. But they end up paying more in compute costs. To address these challenges, the
Run:ai Model Streamer was developed. This tool leverages concurrent reading of model weights from storage
while streaming them to GPU, offering a marked improvement over existing methods.

In this whitepaper, we present an empirical performance analysis of the Run:ai Model Streamer, highlighting its
effectiveness across different storage types (local SSDs and cloud-based S3) and in combination with the
VLLM inference engine. We compare the Run:ai Model Streamer’s performance against other tools, such as the
Hugging Face safetensors loader and Tensorizer, providing insights into its advantages and limitations.

Methodology

Model Loading Overview
Before jumping into the overview of tools, let's have a look at what it means to load a model. Loading a
machine learning model to a GPU for inference involves two main steps:

1. Read Weights from Storage to CPU Memory: Load the model's weights (which can be in various formats
such as .pt, .h5, .safetensors, or custom formats) from storage (local, cluster-wide, or cloud) into CPU
memory.

2. Move Model to GPU: Transfer the model's parameters and relevant tensors to GPU memory.

Notably, when loading models from cloud-based storage like S3, the process involves an additional step of
loading the model to local disk as an intermediate stage before transferring it to CPU and GPU memory.

Traditionally, these steps are taking place sequentially, which makes the model loading times one of the
biggest bottlenecks when scaling up

Side Note: In this whitepaper, we will use the .safetensors model format as the default due to its wide adoption
in the ecosystem. However, be aware that different formats may be used in other resources.

[]
run: RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS 5/20

dl

Run:ai Model Streamer

How does it work?

The Run:ai Model Streamer is a Python SDK with a high performant C++ implementation, designed to
accelerate the model loading times onto GPUs from various storage types (network file systems, S3, Disk, etc.).
It achieves this by using multiple threads to read tensors concurrently from a file in object or file storage, to a
dedicated buffer in the CPU memory. Each tensor is assigned an identifier, which allows the application to
manage which tensors are loaded into GPU memory, enabling simultaneous tensor reading and transferring.
This way the application can load tensors from the CPU memory to the GPU memory while other tensors are
being read from storage to the CPU memory.

Moreover the tool takes full advantage of the fact that GPU and CPU have separate subsystems. The GPU is
connected to the system via PCle, allowing it to access CPU memory directly without needing CPU
interventions. This means that CPU-side storage reads and GPU transfers happen in parallel in real time -
leading to highly efficient and fast model loading across both subsystems.

What are the key features?

» Concurrency: The tool uses multiple threads to read model weight files in parallel, reducing storage
bottlenecks and increasing GPU utilization. Multiple threads are capable of reading a single tensor in
parallel.

» Balanced Workload for Reading: Model tensors come in different sizes. Model Streamer divides the work
in a balanced way regardless of the various sizes of the models so that the storage read bandwidth can be
saturated.

» Support for Multiple Storage Types: Compatible with various storage solutions, including local file
systems (e.g., SSD) and cloud-based object stores (e.g., S3).

* No Tensor Format Conversion: Directly supports safetensors format, eliminating conversion overhead and
ensuring fast model loading.

» Easy Integration: Streamer offers an iterator similar to the Safetensors’s native iterator but with added
benefit of concurrent reading, which is performed in the background. Its Python API simplifies integration
with inference engines like vLLM and TGl while benefiting this highly performant C++ layer.

L 4

What is unique about it?

Model Streamer sets itself apart with its highly optimized C++ layer and support for concurrent tensor reads.
Unlike other tools, which are designed for sequential access, the Model Streamer allows multiple threads to
read from the same tensor simultaneously and streams tensors from CPU to GPU while still reading the
tensors concurrently from storage to CPU. The model streaming utilizes OS-level concurrency to read data
from local file systems, remote file systems, or object stores. In addition to performance, a Python wrapper
provides simple APIs and easy integration into an existing codebase. It allows users to fine-tune the level of
concurrency (RUNAI_STREAMER_CONCURRENCY), data chunk size for each thread
(RUNAI_STREAMER_BLOCK_BYTESIZE), and CPU memory usage (RUNAI_STREAMER_MEMORY_LIMIT), making it
adaptable to systems with limited resources.

Further details on setup and usage can be found in the documentation.

https://github.com/run-ai/runai-model-streamer
https://github.com/run-ai/runai-model-streamer/tree/master/docs

[]
run: ‘ RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS 6/20

dl

HuggingFace (HF) Safetensors Loader

How does it work?

The HuggingFace (HF) Safetensors Loader is an open-source utility that provides a safe and fast format for
saving and loading multiple tensors. The tool uses a memory-mapped file system to avoid unnecessary data
copying. For CPU operations, tensors are mapped directly into memory from the file. On the GPU, the tool
creates an empty tensor with PyTorch, then moves the tensor data using cudaMemcpy, facilitating a zero-
copy loading process.

What are the key features?

* Zero-Copy Loading: Bypasses unnecessary copies, directly mapping tensor data from storage to memory,
resulting in faster read operations.

 Support for CPU and GPU: Allows efficient tensor loading both on CPU (through direct file mapping) and
GPU (via memory-mapped loading).

* Shared Tensors Support: Avoids duplicating tensor data that is referenced by multiple layers in a model,
leading to memory optimization.

What is unique about it?

HF Safetensors Loader's ability to perform zero-copy operations makes it significantly faster than traditional
methods like pickle-based loading. It follows the traditional model loading steps (see here). Its native support
for safetensors format, combined with efficient loading to both CPU and GPU, offers distinct advantages in
terms of safety, speed, and memory efficiency, especially for models with shared layers.

Tensorizer

How does it work?

Tensorizer is an open-source tool developed by CoreWeave that serializes model weights and their
corresponding tensors into a single file. Instead of loading an entire model into RAM before moving it to the
GPU, Tensorizer streams the model data tensor by tensor from an HTTP/HTTPS or S3 source. The serialization
format (model.tensors) contains all metadata at the beginning of the file, allowing for efficient, on-demand
model weight loading. During this process, each read operation is handled by a Python reader, which is
associated with a thread. Each thread is assigned to load specific tensors, but while each tensor is assigned
to only one thread, each thread can manage multiple tensors. These threads can fetch random tensors as
needed.

https://huggingface.co/docs/safetensors/index
https://huggingface.co/docs/safetensors/speed
https://docs.google.com/document/d/18jx_jIFAiJphWFoFOCvNJCpiuTwwLhZB2nCqECeUJMQ/edit#heading=h.3heqldtm81gk
https://www.coreweave.com/blog/coreweaves-tensorizer-decrease-pytorch-model-load-times

[]
run: RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS 7/20

dl

What are the key features?

« Efficient Tensor Streaming: Loads model weights tensor by tensor instead of pre-loading everything into
RAM, reducing memory overhead.

« Single File Serialization: Encodes model weights and tensor metadata into a single file for efficient access
during model loading.

» Threaded Reading: Tensorizer allows multiple Python readers (threads), where each reader fetches
tensors independently. Although only one thread is responsible for reading any particular tensor, each
thread can process multiple tensors, providing a level of parallelism.

» HTTP/S3 Endpoint Support: Supports loading models over the web or cloud storage, making it flexible for
cloud-based deployments.

 Parallel Streaming Encryption/Decryption and Authentication: Supports encryption-at-rest and
cryptographic authentication of model weights during streaming, adding security alongside standard TLS-
based encryption-in-transit.

What is unique about it?

Tensorizer’'s ability to stream model weights directly from HTTP/S3 endpoints allows it to handle large models
without overwhelming system RAM. By assigning threads to individual tensors, it achieves a degree of
parallelism in model loading, though each tensor can only be read by one thread. Additionally, Tensorizer
provides encryption-at-rest and cryptographic verification of model weights, ensuring secure and efficient
handling of models across different environments.

Where Loading Meets Inference Engines: Loading Weights with vLLM

Model serving is not complete without an inference engine. There are many inference engines and servers that
one can utilize. If you are new to the topic, we recommend checking out our previous blog about introduction to

inference engines.

In our previous benchmarking, vLLM showed remarkable performance. Therefore, we will consider vLLM and its
model loading offerings in this whitepaper. The vLLM framework uses the HF safetensors model loading as
default. Additionally, it supports Tensorizer by CoreWeave to load models from S3 endpoints. However, note

that the Tensorizer library requires converting weights from safetensors format to tensorizer format.

For more information about inference engines, please refer to the previous comparison blog.

Side Note: For this benchmarking study, we only utilized vLLM. However, in the future, we are planning to

benchmark different inference engines as well.

https://www.run.ai/blog/serving-large-language-models
https://pages.run.ai/hubfs/PDFs/Serving-Large-Language-Models-Run-ai-Benchmarking-Study_corrected.pdf
https://www.run.ai/blog/serving-large-language-models

[]
run: RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS 8/20

dl

Experiment Setup

This section details the technical configuration and experiment design used to evaluate the performance of
different model loading techniques across various storage types.

Technical Configuration
The experiments were conducted using the following setup:

* Model: Meta-Llama-3-8B, a large-scale language model weighing 15 GB, stored in a single Safetensors
format.
« Hardware: AWS g5.12xlarge instance featuring 4 NVIDIA A10G GPUs (only one GPU was used for all tests to
maintain consistency).
e Software Stack:
- CUDA 124
» VLLM 0.5.5 (Transformers 4.44.2)
* Run:ai Model Streamer 0.6.0
» Tensorizer 2.9.0
» Transformers 4.45.0.devO
» Accelerate 0.34.2

For the experiments involving Tensorizer, the same model was serialized into Tensorizer's proprietary tensor
format using the recipe provided by the Tensorizer framework.

Storage Types

To assess the loaders' performance under different storage conditions, we conducted experiments using
three distinct storage configurations:

* Local SSDs (GP3 and 102 SSDs): High-performance local storage types with different IOPS and
throughput limits.

* GP3SSD
+ Capacity: 750 GB
« IOPS: 16,000
+ Throughput: 1,000 MiB/s
» 102SSD
+ Capacity: 500 GB
+ IOPS: 100,000
+ Throughput: up to 4,000 MiB/s

* Amazon S$3: A cloud-based storage option where the latency and bandwidth constraints of the cloud
environment were expected to affect performance. We used S3 buckets located in the same AWS
region as the instance to minimize inter-region latency.

For pricing details and additional information on AWS storage types, please refer to the AWS page.

https://aws.amazon.com/blogs/storage/how-to-choose-the-best-amazon-ebs-volume-type-for-your-self-managed-database-deployment/

run: RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS 9/20

dl

Experiment Design

The experiments were structured to compare the performance of different model loaders (Run:ai Model
Streamer, Tensorizer, and HuggingFace Safetensors Loader) across the three storage types:

° Experiment #1: GP3 SSD

We measured model loading times using different loaders on the GP3 SSD configuration. (Results as Tables
in Appendix A.)

° Experiment #2: 102 SSD

The same loaders were tested on |02 SSD to evaluate the impact of higher IOPS and throughput. (Results as
Tables in Appendix B.)

° Experiment #3: Amazon S3

This experiment focused on comparing loaders in a cloud storage scenario. Safetensors Loader was
excluded as it does not support S3. (Results as Tables in Appendix C.)

° Experiment #4: vLLM with different loaders'

We integrated Run:ai Model Streamer into vLLM to measure the complete time required to load the model
for all the storage types above and make it ready for inference. We compare it with the default loader of
vLLM (HF Safetensors Loader) for SSD experiments and Tensorizer integration of vLLM for S3 experiments
(Safetensors Loader does not support loading from S3). This experiment allowed us to test the overall
impact of the loaders on end-to-end model serving times. (Results as Tables in Appendix D.)

Each experiment was conducted under cold-start conditions to ensure consistency and eliminate the effects
of cached data. For the cloud-based Amazon S3 tests, at least two-minute wait between tests was
introduced to avoid any caching effects on AWS side and maintain accuracy in the results.

Specifically for Tensorizer experiments, we serialized the same model following the Tensorizer recipe to the
required tensor format For the benchmarking experiments for standalone Tensorizer, the benchmarking
recipe in their repository is utilized. We performed these experiments without the optional hashing.

'For vLLM experiments, we used eager mode and disabled swap-size due to the fact that we are not
implementing any beam-search.

2During our research, we learned that serialization of the weights for the vLLM engine using Tensorizer should
be done via the provided serialization script in the vLLM repository . Therefore, for experiments, where the
Tensorizer is coupled with a vVLLM engine, we used the VLLM script to serialize the model weights. For the
standalone loader experiments, we followed the serialization recipe in the Tensorizer repository. Further
performance investigation of these scripts are not in the scope of this whitepaper.

https://github.com/coreweave/tensorizer/blob/main/examples/serialize.py
https://github.com/coreweave/tensorizer/tree/main/examples/benchmark
https://github.com/coreweave/tensorizer/tree/main/examples/benchmark
https://docs.vllm.ai/en/stable/getting_started/examples/tensorize_vllm_model.html
https://github.com/coreweave/tensorizer/blob/main/examples/serialize.py

rura\.i RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS 10/20

Experiment Results

Experiment #1: GP3 SSD

In this initial experiment, we compared the loading performance of different model loaders using GP3 SSD
storage. First, we evaluated the impact of concurrency on the performance of the Run:ai Model Streamer (see
Figure 1) and examined how the number of workers affected Tensorizer (see Appendix A). For Run:ai Model
Streamer, increasing the concurrency—the number of concurrent threads reading from storage into CPU
memory—led to a notable decrease in model loading time.

At concurrency 1, Run:ai Model Streamer loaded the model in 47.56 seconds, slightly slower than HuggingFace
Safetensors Loader at 47.99 seconds. However, as we increased concurrency, we observed significant
improvements. With a concurrency of 16, the loading time dropped to 14.34 seconds, while maintaining a
steady throughput of approximately 1 GiB/s, which is the maximum throughput of GP3 SSD. Beyond this
concurrency level, performance gains were constrained by the storage’s throughput limit.

N I Run:ai Model Streamer (Standalone)
60
w
©
6
o 40
Q
v
20

Time to Load the Model from the Storage to GPU

- < ® ©
" i i i Level of Concurrency
3 > > >
c) 2 0
o 5 5 c
= £ E &
g3 3 3
o & 5 c
Q S O 8

Figure 1: The Effect of Concurrency on Model Loading Performance with Run:ai Model Streamer on GP3 SSD. This figure shows the
impact of different concurrency levels (1, 4, 8, and 16) on model loading time using the Run:ai Model Streamer. As concurrency
increases, load times decrease significantly, dropping from 47.56 seconds (at concurrency 1) to 14.34 seconds (at concurrency 16). At
this point, the streamer achieves the maximum possible throughput of 1GiB/s, which is the limit of the GP3 SSD.

L]
run: RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS 1/20

dl

Tensorizer showed similar scaling behavior. With a single worker, the loading time was close to that of the
Safetensors Loader at 50.74 seconds. As the number of workers increased, Tensorizer reached its best
performance with 16 workers, achieving a loading time of 16.11 seconds and a throughput of 984.4 MiB/s, again
nearing the maximum bandwidth of GP3 SSD.

The storage throughput limit of GP3 SSD was the bottleneck for both Run:ai Model Streamer and Tensorizer,
limiting further performance improvements. This led us to test a higher throughput storage solution in
Experiment #2.

- Safetensors Loader (Standalone)
A [Run:ai Model Streamer (Standalone)

[l Tensorizer (Standalone)

60

47.99s
- 47.995]

20

Time to Load the Model from the
Storage to GPU (seconds)

= | 16115 |
N
7

Loaders

Figure 2: Model Loading Performance on AWS GP3 SSD with Safetensors Loader, Run:ai Model Streamer, and Tensorizer. This figure
compares the model loading times of Safetensors Loader, Run:ai Model Streamer, and Tensorizer on AWS GP3 SSD. The best observed
performance for each loader is shown. For the Run:ai Model Streamer, the optimal result was achieved with a concurrency level of 16.
For Tensorizer, the best performance was recorded using 16 workers as well (see Appendix A).

Experiment #2:102 SSD

For the second experiment, we used 102 SSD, which offers significantly higher throughput than GP3 SSD. As
before, we analyzed the effect of concurrency on Run:ai Model Streamer (see Figure 3) and the number of
workers on Tensorizer (see Appendix B).

At concurrency 1, Run:ai Model Streamer and HuggingFace Safetensors Loader showed similar loading times of
43.71 seconds and 47 seconds, respectively. However, as we increased concurrency, Run:ai Model Streamer
showed much more pronounced gains compared to GP3 SSD. With concurrency 8, the model was loaded in
just 7.53 seconds, making it around 6x faster than the HuggingFace Safetensors Loader, which took 47
seconds.

For Tensorizer, the performance also improved significantly. The optimal result was observed with 8 workers,
achieving a model loading time of 10.36 seconds (see Figure 4 and Appendix B). Beyond that, adding more
workers did not yield further performance improvements, likely due to storage throughput limitations.

Despite the theoretical maximum throughput of 4 GiB/s for I02 SSD, our experiments consistently hit a ceiling
at around 2 GiB/s with Run:ai Streamer and 1.6 GiB/s with Tensorizer. This suggests practical throughput
limitations on the AWS infrastructure, rather than the loaders themselves.

https://www.figma.com/design/FSISM8An2VdLI5utuLH0qF/run_ai-%7C-Lindsey-Copy?node-id=175-4947

rugi RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS 12/20

)

a

O

8

o N I Run:ai Model Streamer (Standalone)

o)

@

—

o

=

0

o 60

<

-

Ew

0T

& C 40

_ 0 | 43715

[0} O

o &

§ ~

° 20

<

=)

ko) | 11.19s |

g | 7.55s | | 7.61s |

-
e N [eo] [}

2 u i i i Level of Concurrency

4] 0 3 3 2

S o & 5 g

. 3 5 5 £
O >
c Q 2 0
e} S s c
o] S S s}

© [}

Figure 3: The Effect of Concurrency on Model Loading Performance with Run:ai Model Streamer on |02 SSD. This figure shows the
impact of different concurrency levels (1, 4, 8, and 16) on model loading time using the Run:ai Model Streamer. As concurrency
increases, load times decrease significantly, dropping from 43.71 seconds (at concurrency 1) to 7.53 seconds (at concurrency 8).

[safetensors Loader (Standalone)
B Run:ai Model Streamer (Standalone)

[l Tensorizer (Standalone)
60

40

20

Time to Load the Model from the
Storage to GPU (seconds)
\\’4

Loaders

Figure 4: Model Loading Performance on AWS 102 SSD with Safetensors Loader, Run:ai Model Streamer, and Tensorizer. This figure
compares the model loading times of Safetensors Loader, Run:ai Model Streamer, and Tensorizer on AWS |02 SSD. The best
observed performance for each loader is shown. For the Run:ai Model Streamer, the optimal result was achieved with a concurrency
level of 8. For Tensorizer, the best performance is recorded using 8 workers as well (see Appendix B).

https://www.figma.com/design/FSISM8An2VdLI5utuLH0qF/run_ai-%7C-Lindsey-Copy?node-id=175-4947

rura‘.i RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS 13/20

Cloud Storage Experiments (S3)

Experiment #3: S3 Bucket

In this experiment, we compared the performance of Run:ai Model Streamer and Tensorizer using Amazon S3
as the storage medium. Since HuggingFace Safetensors Loader does not support S3, it was not included in
this benchmarking experiment. For the Tensorizer experiments, we used different numbers of workers and
chose the best result for Figure 6, which was achieved with 16 workers in this case (see Appendix C).

The results showed that Run:ai Model Streamer outperformed Tensorizer at all tested concurrency levels. At
concurrency 4, Run:ai Model Streamer loaded the model in 28.24 seconds. As concurrency increased, Run:ai
Model Streamer continued to improve, reaching a load time of 4.88 seconds at concurrency 32, compared to
37.36 seconds for Tensorizer's best result with 16 workers. This demonstrates Run:ai Model Streamer’s superior
efficiency in loading from cloud-based storage.

B Run:ai Model Streamer (Standalone)

40

(seconds)

20

1 4.88s | | 5.015 |

4
16
32

6

Level of Concurrency

=64

Time to Load the Model from the Storage to GPU

Concurrency

Concurrency
Concurrency
Concurrency

Figure 5: The Effect of Concurrency on Model Loading Performance with Run:ai Model Streamer on S3 Bucket. This figure shows the
impact of different concurrency levels (4, 16, 32 and 64) on model loading time using the Run:ai Model Streamer. As concurrency
increases, load times decrease significantly, dropping from 28.24 seconds (at concurrency 4) to 4.88 seconds (at concurrency 32).

I Run:ai Model Streamer (Standalone)

I Tensorizer (Standalone)

60

40

20

Time to Load the Model from the
Storage to GPU (seconds)

=] N
7

Loaders

Figure 6: Model Loading Performance from AWS S3 with Run:ai Model Streamer, and Tensorizer. This figure compares the model
loading times of Run:ai Model Streamer and Tensorizer from S3 bucket. The best observed performance for each loader is shown. For
the Run:ai Model Streamer, the optimal result was achieved with a concurrency level of 32 (4.88 seconds), while for Tensorizer, the
best performance was recorded using 16 workers (37.36 seconds).

[]
run: RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS 14/20

dl

Side note: During our experiments, we observed unexpected caching behavior on AWS S3. When experiments were
repeated in quick succession, the model load times significantly improved, likely due to some form of S3 caching
mechanism. To ensure consistency and avoid benefiting from this "warm cache," we introduced at least a 3-minute wait
between each test run. The results presented here reflect the times recorded after these intervals, ensuring they
represent cold-start conditions.

Experiment #4: vLLM with All Loaders

In this experiment, we integrated the different model loaders into vLLM to assess the total time required for
the model to be ready for inference when an inference engine is used. This includes the entire process from
loading the model to the point where it can handle user requests. While all loaders Run:ai Model Streamer,
HuggingFace Safetensors Loader and Tensorizer were tested with local storage (GP3 SSD and 102 SSD),
HuggingFace Safetensors was excluded from S3 storage configurations since it does not support loading from
S3 bucket. We tested Tensorizer for S3 storage together with vLLM and compared it with Run:ai Model
Streamer.

For each vLLM + Run:ai Model Streamer experiment, we used the most optimal concurrency levels determined
from earlier experiments. Specifically:

 For GP3 SSD, a concurrency level of 16 was used (see Figure 1).
« For 102 SSD, the concurrency level was also 8 (see Figure 3).
+ For S3 storage, a higher concurrency level of 32 was employed (see Figure 5).

These optimal concurrency levels were selected based on the findings from our standalone loader
experiments (such as in Experiment #1 with GP3 SSD), where different concurrency levels were tested to
determine the most efficient configuration for Run:ai Model Streamer. Once the best-performing concurrency
levels were identified, they were applied in the corresponding VLLM experiments to ensure the loaders
performed optimally within vLLM.

Similarly, for the Tensorizer + vLLM integration, we used the most optimal number of workers determined in
previous experiments. Specifically:

+ For GP3 SSD, 16 workers were used (see Appendix A)
+ For 102 SSD, 8 workers were used (see Appendix B)
+ For S3, 16 workers were used (see Appendix C)

For GP3 SSD, Run:ai Model Streamer required 35.08 seconds in total, while HuggingFace Safetensors Loader
took 66.13 seconds. Similarly, with 102 SSD, Run:ai Model Streamer reduced the time to 28.28 seconds, while
HuggingFace Safetensors Loader required 62.69 seconds. The same trend was observed with Tensorizer as
well. For GP3 SSD experiments, Tensorizer took 36.19 seconds while this number lowered down to 30.88 with
102 SSD.

In both cases, Tensorizer and Run:ai Model Streamer cut down the readiness time of the engine by around half
in comparison to Safetensors Loader.

For the S3 storage configuration, Run:ai Model Streamer achieved a total readiness time of 23.18 seconds,
while Tensorizer took 65.18 seconds to achieve the same outcome.

rura\.i RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS 15/20

Il safetensors Loader (Standalone) [Run:ai Model Streamer (Standalone) [l Tensorizer (Standalone)
VLLM with Safetensors Loader VvLLM with Run:ai Model Streamer VLLM with Tensorizer
N

80
—_
(2]
-c 66.13s
5 © 62.695 65185
O
Q
n
-

40
Q
£ 35.08s|
|—

20

GP3SSD 102ssD GP3SSD 102SSD Ss3 GP3ssD 102 SsD S3

Storage Types

Figure 7: This figure presents the total time required for the vLLM engine to be ready for inference across different storage types
(GP3 SSD, 102 SSD, and S3) when using Run:ai Model Streamer, HuggingFace Safetensors Loader, and Tensorizer. The dark-colored
bars show the time it takes to load the model from storage to GPU while the light-colored bars show the total time for the vLLM
engine to load and get ready to serve requests (time to load the model plus the time to warm the inference engine up). For local
storage options (GP3 and 102 SSD), the Run:ai Model Streamer and Tensorizer consistently outperformed the Safetensors Loader,
cutting readiness times nearly in half. On S3, both Run:ai Model Streamer and Tensorizer were tested, with Run:ai Model Streamer
delivering significantly faster readiness times.

Discussion & Conclusion

Run:ai Model Streamer: Consistent High Performance Across Storage Types

In each experiment, Run:ai Model Streamer demonstrated a significant performance advantage across all
storage solutions. On GP3 SSD and 102 SSD, we observed that the Run:ai Model Streamer reached its best
performance at concurrency 16 and 8 respectively, where it consistently approached the maximum
throughput limits of the storage devices—1 GiB/s for GP3 and 2 GiB/s for I02—dramatically reducing model
load times in comparison to HuggingFace Safetensors Loader. This was particularly evident in Experiment #2,
where Run:ai Model Streamer loaded the model in just 7.53 seconds on 102 SSD, around 6x reduction in load
time compared to HuggingFace Safetensors Loader.

When moving to Experiment #3 on Amazon S3, the Run:ai Model Streamer achieved 4.88 seconds at
concurrency 32, vastly outperforming Tensorizer, which took 37.36 seconds with its best configuration of 16
workers. This is due to the fact that Run:ai Model Streamer creates an AWS S3 client per thread, with each
thread sending multiple asynchronous requests to the S3 backend. As a result, the effective concurrency level
is much higher than just the thread count. For example here, with a configured concurrency of 32, the
effective concurrency level is multiplied by the AWS max concurrency limit (default is 50), resulting in an
effective concurrency level 50 times larger. The 7.6x performance difference highlighted not only the
Streamer’s superior efficiency in handling cloud-based storage but also its ability to scale with utilizing
concurrency fully, a key factor in minimizing latency in large-scale deployments.

L]
run: RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS 16/20

dl

Evenly Distributed Workload Across Threads in S3 Environments

One of the standout features of the Run:ai Model Streamer that we also proved with Experiment #3 is its
ability to evenly distribute the workload across all threads, independent of the specific model or the size of
the tensors being loaded. The streamer is designed in layers, where the storage layer reads the file in equal
blocks. This way, the Streamer ensures that all threads are fully utilized, leading to better scalability and higher
throughput at higher concurrency levels as we can see in S3 experiment results (see Experiment #3).

Concurrency and Storage Throughput as Key Performance Drivers

One of the most striking findings from the experiments is the critical role that concurrency and storage
throughput play in determining model loading performance. In Experiment #1(GP3 SSD), increasing
concurrency significantly improved loading times for Run:ai Model Streamer until the storage throughput
became the limiting factor. This is consistent with the Streamer’s design, which leverages multi-threading to
maximize data throughput from storage to the GPU. For GP3 SSD and 102 SSD, concurrency 16 and 8 proved to
be the sweet spot respectively, allowing the streamer to achieve maximum throughput without being
bottlenecked by the storage bandwidth. Beyond this point, further increases in concurrency did not result in
substantial improvements, as the storage bandwidth had already been saturated. The GP3 SSD’s throughput
limit of 1 GiB/s is clearly reflected in the data, where the performance plateaued at higher concurrency levels.
This is an important observation, as it demonstrates that loading efficiency is ultimately constrained by the
storage medium'’s ability to provide data.

VLLM Integration and 2x Faster Time to Model Readiness for End Users

Our final experiment, Experiment #4, which integrated these loaders with vLLM, further supports the
versatility of the Run:ai Model Streamer. In both local storage configurations—GP3 SSD and 102 SSD—Run:ai
Model Streamer outperformed the HuggingFace Safetensors Loader by a significant margin. On GP3 SSD,
Run:ai Model Streamer required only 35.08 seconds to prepare the model for inference, compared to 66.13
seconds for Safetensors Loader. The same pattern held for |02 SSD, with Run:ai Model Streamer reducing
readiness time to 28.28 seconds, a stark contrast to the 62.69 seconds needed by the default loader.

In the cloud-based scenario of S3 storage, Run:ai Model Streamer showcased its efficiency by achieving
readiness in 23.18 seconds, while Tensorizer required more double that time (65.18 seconds). The high
performance of Run:ai Model Streamer under both local and cloud storage conditions underlines its broad
applicability in various machine learning deployment contexts and setups.

[]
run: RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS 17/20

dl

Future Work

As we conclude this benchmarking study, several topics present themselves for future exploration and
refinement of our findings. The following areas stand out as promising directions for advancing our
understanding of the Run:ai Model Streamer’s performance when it comes to serving large language models
(LLMs):

Expanding beyond vLLM: While our benchmarking focuses on vLLM, other high-performance inference
engines, such as Hugging Face's Text Generation Inference (TGI) can be evaluated for integration with the
Run:ai Model Streamer. Different engines may have different optimizations that could further reduce loading
times or reveal new bottlenecks.

Multi-GPU Model Parallelism: While we used a single GPU in our experiments, a deeper exploration into
multi-GPU inference use cases could offer a more comprehensive view.

Testing on Kubernetes Clusters for Auto-scaling purposes: A further investigation on Kubernetes-based
environments can give a better overview on the performance improvement of the Run:ai Model Streamer in
comparison to other loaders for autoscaling use cases of LLMs. Evaluation on real production environments
with unpredictable workloads can give more insights on its impact under load spikes, failover scenarios, and
auto-scaling events.

Investigating Faster Storage Solutions: Given the speed limitations of even high-end SSDs like 102, exploring
the impact of integrating faster storage technologies for ultra-fast data transfers can be investigated further
for reducing cold start times even further. We also expect to see highly optimized results for reading from
storage types that are designed for multiple clients, such as distributed storage types (e.g. NAS and object
stores) due to the design of Run:ai Model Streamer.

About Run:ai

Run:ai is revolutionizing the Al infrastructure landscape with its platform, designed to optimize the efficiency,
scalability, and accessibility of Al and machine learning operations. By addressing the challenges of Al
infrastructure, Run:ai empowers enterprises to accelerate their Al initiatives and foster innovation.

To learn more about Run.ai visit:

https://www.run.ai
https://www.run.ai/platform
https://www.run.ai/runai-for-data-science

run:
d

Appendix A

I RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS

Experiment #1: GP3 SSD Results as Table

Run:ai Model Streamer

HuggingFace Safetensors Loader

Concurrency Time to Load the Model to GPU (s) Time to Load the Model to GPU (s)
1 4756 4799
4 14.43
8 14.42
16 14.34

Tensorizer
Number of Readers Time to Load the Model to GPU (s)

1 50.74
4 17.38
8 16.49

16 161

32 1718

64 16.44

100 16.81

Appendix B

Experiment #2: 102 SSD Results as Table

Run:ai Model Streamer

HuggingFace Safetensors Loader

Concurrency | Time to Load the Model to GPU Time to Load the Model to GPU
(s) (s)
1 4371 47
4 119
8 7.53
16 761
20 762

18/20

run:

ai RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS

Tensorizer

Number of Readers

Time to Load the Model to GPU (s)

1

43.85
4 14.44
8 10.36
16 10.61
32 10.95
Appendix C

Experiment #3: S3 Bucket Results as Table

Run:ai Model Streamer

Concurrency Time to Load the Model to GPU (s)
4 28.24
16 8.45
32 4.88
64 5.01

Tensorizer

Number of Readers

Time to Load the Model to GPU (s)

8

86.05
16 37.36
32 48.67
64 4149
80

4143

19/20

[]
run: RUN:AI MODEL STREAMER: PERFORMANCE BENCHMARKS

dl

Appendix D

Experiment #4: vLLM Results as Table

For GP3 SSD Storage

vLLM with Different Loaders

Loader

Total time until vLLM engine is ready for
requests (s)

Safetensors Loader 66.13
Run:ai Model Streamer 35.08
Tensorizer 36.19

For |02 SSD Storage

vLLM with Different Loaders

Loader

Total time until vLLM engine is ready for
requests (s)

Safetensors Loader 62.69
Run:ai Model Streamer 28.28
Tensorizer 30.88

For S3 Storage

vLLM with Different Loaders

Loader

Total time until vLLM engine is ready for
requests (s)

Run:ai Model Streamer

2318

Tensorizer

65.18

20/20

