
Problem Aware, MLOps 

Kubernetes
Scheduling for AI

-

Challenges of

Using K8s for AI

The Challenges of Scheduling AI Workloads on Kubernetes

Kubernetes Scheduling Basics

Scale-out vs. Scale-up Architecture�ֿֿ

Batch Scheduling Explained

What is Topology Awareness?

Gang Scheduling

Kubernetes Scheduling with Run:AI

See Our Additional Guides on Key Artificial Intelligence Infrastructure Topics

GPUs for Deep Learning

MLOps

What's Missing?

Table of contents

1/7

2

3

3

3-4

3

3

4

4

4

5

6

6

6

7

7

What is a Hyperscale System?

Scheduling for Hyperscale Systems

What is a High-Performance System?

Scheduling for High-Performance Systems

Problem Aware, MLOps | Kubernetes Scheduling for AI

This article explains the basics of Kubernetes scheduling. The guide
explains how Kubernetes, the de-facto choice for container orchestration, is
not suited for scheduling and orchestration of Deep Learning workloads.
We will address the specific areas where Kubernetes falls short for AI and
how you can address those shortfalls.

�

� Kubernetes Scheduling Basic�

� Scale-out vs. Scale-up System�

� Batch Schedulin�

� Topology Awarenes�

� Gang Scheduling

This is part of an extensive series of guides about Kubernetes Architecture

2/7

The Challenges of Scheduling AI
Workloads on Kubernetes

Problem Aware, MLOps | Kubernetes Scheduling for AI

https://www.run.ai/guides/kubernetes-architectureֿ

In Kubernetes, scheduling means making sure that pods are attached to worker nodes. The default
Kubernetes scheduler is , which runs in the cluster’s master node and “watches” for newly
created pods that have no node assigned. The scheduler first filters the existing cluster nodes according
to the container/pod’s resource configurations and identifies “feasible” nodes that meet the scheduling
requirements. It then scores the feasible nodes and picks the node with the highest score to run the pod.
The scheduler notifies the master node’s API server about the decision in a binding process.

If no suitable node is found, the pod is unscheduled until the scheduler succeeds in finding a match.

kube-scheduler

Kubernetes Scheduling Basics

Kubernetes was built as a Hyperscale System with Scale-out architecture for running services. For more
information on Kubernetes architecture . AI/ML workloads require a different
approach. They should run on high-performance systems that can efficiently scale-up workloads.

read the article here

Scale-out vs. Scale-up Architecture

What's Missing?

Kubernetes was built for running microservices with scale-out architecture in mind. The default

 is therefore not ideal for AI workloads, lacking critical high-performance
scheduling components like batch scheduling, preemption, and multiple queues for efficiently
orchestrating long running jobs. In addition, K8s is missing gang scheduling for scaling up parallel
processing AI workloads to multiple distributed nodes, and topology awareness

for optimizing performance.

Kubernetes scheduler

What is a Hyperscale System?

Hyperscale systems were designed and built to run microservices that can serve millions of requests.
Such services are always up, waiting for triggers to take action and serve incoming calls, needing to
support peak demands that can grow notably with respect to average demand.

Hyperscale systems are typically based on cost-efficient hardware that allows each application to
support millions of service requests at a sufficiently low price.

Scheduling for Hyperscale Systems

Hyperscale systems require a scheduling approach that spreads a large number of service instances on
multiple servers to be resilient to server failures, and even to multiple zones and regions to be resilient
to data center outages. They are based on auto-scaling mechanisms that quickly scale out
infrastructure, spinning machines up and down to dynamically support demand in a cost-efficient way.
Kubernetes was built to satisfy such requirements.

3/7Problem Aware, MLOps | Kubernetes Scheduling for AI

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/
https://www.run.ai/guides/kubernetes-architecture
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/

What is a High-Performance System?

A high-performance system with scale-up architecture is one in which workloads are running across
multiple machines, requiring high-speed, low-latency networking and software programs that can run
distributed processes for parallel computing.

High-performance systems support workloads for data science, big data analytics, AI, and HPC. In these
scenarios the infrastructure should support tens to thousands of long-running workloads concurrently, not
millions of short, concurrent service requests as is the case with microservices. AI workloads run to
completion, starting and ending by themselves without user intervention (called 'batch jobs', which we will
address in more detail later), typically for long durations ranging from hours, days and in some cases even
for weeks.

Infrastructure for data science and HPC needs to have the capability to host compute-intensive workloads
and process them fast enough. It is therefore based on high end, expensive hardware, including in some
cases specialized accelerators like GPUs which typically results in high cost per workload/user.

Scheduling for High-Performance Systems

For high-performance systems to work efficiently, they need to enable large workloads that require
considerable resources to coexist efficiently with small workloads requiring fewer resources. These
processes are very different than the spread scheduling and scale-out mechanism required for
microservices. They require scheduling methods like bin packing and consolidation to put as many
workloads as possible on a single machine to gain efficiency of hardware utilization and reduce machine
fragmentation. Reserved instances and backfill scheduling are needed to prevent cases where large
workloads requiring multiple resources need to wait in queue for a long time and batch scheduling and
preemption mechanisms are needed to orchestrate long running jobs dynamically according to priorities
and fairness policies. In addition, elasticity is required to scale up a single workload to use more resources
according to availability.

Batch workloads are jobs that run to completion unattended (i.e., without user intervention). Batch
processing and scheduling is commonly used in High Performance Computing (HPC) but the concept
can easily be applied to data science and AI. With batch processing, training models can start, end, and
then shut down, all without any manual intervention. Plus, when the container terminates, the resources
are released and can be allocated to other workloads.

The scheduler that is native to Kubernetes does not use batch scheduling methods like multi-queue
scheduling, fairness, advanced preemption mechanisms, and more, all of which are needed to
efficiently manage the lifecycle of batch workloads. With such capabilities jobs can be paused and
resumed automatically according to predefined priorities and policies, taking into account the fluctuating
demands and the load of the cluster. Batch scheduling also prevents jobs from being starved by heavy
users and ensures fairness between multiple users sharing a cluster.

Batch Scheduling Explained

4/7Problem Aware, MLOps | Kubernetes Scheduling for AI

Another challenge of running AI workloads on Kubernetes relates to a concept called ‘topology awareness’.
This refers to:minter-node communication an�
�� how resources within a node inter-connect

These two topological factors that have major impact on the runtime performance of workloads. In clusters
managed by a centralized orchestration system, the responsibility of provisioning resources and optimizing
allocations according to these topological factors is at the hands of the cluster manager. Kubernetes has
not yet addressed topology awareness efficiently, resulting in lower performance when sub-optimal
resources are provisioned. Performance inconsistency is another issue -workloads may run at maximum
speed, but often poor hardware setup leads to lower performance.

Scheduler awareness to the topology of interconnect links between nodes is important for distributed
workloads with parallel workers communicating across machines. In these cases, it is critical that the
scheduler binds pods to nodes with fast interconnect communication links. For example, nodes located in
the same rack would typically communicate faster and with lower latency than nodes located in different
racks. The default K8s scheduler today does not account for inter-node communication.

Another important aspect of topology awareness relates to how different resources within a node are
communicating. Typically, multiple CPU sockets, memory units, network interface cards (NICs), and multiple
peripheral devices like GPUs, are all set up in a node in a topology that is not always symmetric. For
example, different memory units can be connected to different CPU sockets and a workload running on a
specific CPU socket would gain the fastest read/write data access when using the memory unit closest to
the CPU socket. Another example would be a workload running on multiple GPUs in a node with non-
uniform topology of inter-GPU connectors. Provisioning the optimal mix of CPUs, memory units, NICs,
GPUs, etc., is often called NUMA (non-uniform memory access) alignment.

Topology awareness relating to NUMA alignment has been addressed by Kubernetes but the current
implementation is limited and highly inefficient - the Kubernetes scheduler allocates a node for a
workload without knowing if CPU/memory/GPU/NIC alignm ent can be applied. If such alignment is not
feasible on the chosen node, best-effort configuration would run the workload using a sub-optimal
alignment while restricted configuration would fail the workload. Importantly, sub-optimal alignment and a
failure to run a workload can occur even in cases where other nodes that can satisfy NUMA alignment are
available in the cluster.

The limitations of topology-awareness relate to a basic flaw in Kubernetes architecture. The scheduling
mechanism of Kubernetes is based on splitting responsibilities between the scheduler which operates at the
cluster level and Kubelet which operates at the node level. The scheduler allocates nodes for containers
based on information about the number of resources available in each node, without being aware of the
topology of the nodes, the topology of the resources within a node, and which exact resources are actually
available at a given moment. Kubelet, together with components of Linux OS and device plugins, is
responsible for scheduling the containers and for allocating their resources within the node. This
architecture is perfect for orchestrating microservices running within a node, but fails to provide high,
consistent performance when orchestrating compute-intensive jobs and distributed workloads.

Compare in another guide from this series.
Kubernetes vs Slurm schedulers

5/7

What is Topology Awareness?

Problem Aware, MLOps | Kubernetes Scheduling for AI

https://www.run.ai/guides/slurm/slurm-vs-lsf-vs-kubernetes-scheduler-which-is-right-for-you

The third AI-focused component missing from Kubernetes is gang scheduling. Gang scheduling is used
when containers need to be launched together, start together, and end together. For example, this capability
is required for distributed workloads to ensure that different containers are launched on different nodes
only when enough resources are available, preventing inefficiencies and dead-lock situations where one
group of containers are launched while others are waiting for resources to become available. Gang
scheduling can also help with recovery when some of the containers fail, without requiring a restart of the
entire workload.

Compare in another guide from this series.Kubernetes vs Slurm schedulers

Run:AI’s Scheduler plugs into Kubernetes clusters to enable optimized orchestration of high-performance AI
workloads�

� High-performance system - for scale-up infrastructures that pool resources and enable large workloads
that require considerable resources to coexist efficiently with small workloads requiring fewer resources�

� Batch Scheduling - training models can start, pause, restart, end, and then shut down, all without any
manual intervention. Plus, when the container terminates, the resources are released and can be
allocated to other workloads for greater system efficiency�

� Topology awareness— inter-resource and inter-node communication enable consistent high
performance of AI workloads�

� Gang Scheduling - containers can be launched together, start together, and end together for distributed
workloads that need considerable resources.

Run:AI simplifies Kubernetes scheduling for AI workloads, helping data scientists accelerate their
productivity and the quality of their models. Learn more about the Run:AI platform.

6/7

We have authored in-depth guides on several other artificial intelligence
infrastructure topics that can also be useful as you explore the world of
deep learning GPUs.

See Our Additional Guides on Key Artificial
Intelligence Infrastructure Topics

Gang Scheduling

Kubernetes Scheduling with Run:AI

Problem Aware, MLOps | Kubernetes Scheduling for AI

https://www.run.ai/guides/slurm/slurm-vs-lsf-vs-kubernetes-scheduler-which-is-right-for-you
https://www.run.ai/platform

MLOps

Learn how to assess GPUs to determine which is the best GPU for your deep learning model. Discover
types of consumer and data center deep learning GPUs. Get started with PyTorch for GPUs – learn how
PyTorch supports NVIDIA’s CUDA standard, and get quick technical instructions for using PyTorch with
CUDA. Finally, learn about the NVIDIA deep learning SDK, what are the top NVIDIA GPUs for deep learning,
and what best practices you should adopt when using NVIDIA GPUs�

�
�
�

Best GPU for Deep Learning: Critical Considerations for Large-Scale A�
PyTorch GPU: Working with CUDA in PyTorc�
NVIDIA Deep Learning GPU: Choosing the Right GPU for Your Project

In today’s highly competitive economy, enterprises are looking to Artificial Intelligence in general and
Machine and Deep Learning in particular to transform big data into actionable insights that can help them
better address their target audiences, improve their decision-making processes, and streamline their supply
chains and production processes, to mention just a few of the many use cases out there. In order to stay
ahead of the curve and capture the full value of ML, however, companies must strategically embrace
MLOps.

See top articles in our MLOps guide

�

�
�
�

Machine Learning Ops: What is it and Why We Need I�
Machine Learning Automation: Speeding Up the Data Science Pipelin�
Machine Learning Workflow: Streamlining Your ML Pipeline

7/7

Read more about how Run:ai supports
data scientists here

www.run.ai/runai-for-data-science

Run:ai is an AI management platform for MLOps, Data Science, and DevOps teams. In addition to helping
these teams access and utilize their GPU resources more effectively, it also has a powerful set of features
that can abstract infrastructure complexities and simplify the process of training and deploying models.
With or without a GPU shortage, Run:ai enables data scientists to focus on innovation without having to
worry about resource limitations.

About Run:ai

GPUs for Deep Learning

Problem Aware, MLOps | Kubernetes Scheduling for AI

https://www.run.ai/guides/gpu-deep-learning/best-gpu-for-deep-learning
https://www.run.ai/guides/gpu-deep-learning/pytorch-gpu
https://www.run.ai/guides/nvidia-a100/nvidia-deep-learning-gpu
https://www.run.ai/guides/machine-learning-operations
https://www.run.ai/guides/machine-learning-engineering/machine-learning-automation
https://www.run.ai/guides/machine-learning-engineering/machine-learning-workflow
https://www.run.ai/runai-for-data-science
https://www.run.ai/platform

	Benchmarking Report
	Benchmarking Report-1
	A4 - 121
	A4 - 117
	A4 - 118
	A4 - 122
	A4 - 123
	A4 - 124

