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This article explains the basics of Kubernetes scheduling. The guide 
explains how Kubernetes, the de-facto choice for container orchestration, is 
not suited for scheduling and orchestration of Deep Learning workloads. 
We will address the specific areas where Kubernetes falls short for AI and 
how you can address those shortfalls.

�

� Kubernetes Scheduling Basic�

� Scale-out vs. Scale-up System�

� Batch Schedulin�

� Topology Awarenes�

� Gang Scheduling



This is part of an extensive series of guides about Kubernetes Architecture
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The Challenges of Scheduling AI 
Workloads on Kubernetes
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https://www.run.ai/guides/kubernetes-architectureֿ


In Kubernetes, scheduling means making sure that pods are attached to worker nodes. The default 
Kubernetes scheduler is , which runs in the cluster’s master node and “watches” for newly 
created pods that have no node assigned. The scheduler first filters the existing cluster nodes according 
to the container/pod’s resource configurations and identifies “feasible” nodes that meet the scheduling 
requirements. It then scores the feasible nodes and picks the node with the highest score to run the pod. 
The scheduler notifies the master node’s API server about the decision in a binding process.

 


If no suitable node is found, the pod is unscheduled until the scheduler succeeds in finding a match.

kube-scheduler

Kubernetes Scheduling Basics

Kubernetes was built as a Hyperscale System with Scale-out architecture for running services. For more 
information on Kubernetes architecture . AI/ML workloads require a different 
approach. They should run on high-performance systems that can efficiently scale-up workloads.

read the article here

Scale-out vs. Scale-up Architecture

What's Missing?

 

Kubernetes was built for running microservices with scale-out architecture in mind. The default 

 is therefore not ideal for AI workloads, lacking critical high-performance 
scheduling components like batch scheduling, preemption, and multiple queues for efficiently 
orchestrating long running jobs. In addition, K8s is missing gang scheduling for scaling up parallel 
processing AI workloads to multiple distributed nodes, and topology awareness 

for optimizing performance.

Kubernetes scheduler

What is a Hyperscale System?

 

Hyperscale systems were designed and built to run microservices that can serve millions of requests. 
Such services are always up, waiting for triggers to take action and serve incoming calls, needing to 
support peak demands that can grow notably with respect to average demand.



Hyperscale systems are typically based on cost-efficient hardware that allows each application to 
support millions of service requests at a sufficiently low price.

Scheduling for Hyperscale Systems

 

Hyperscale systems require a scheduling approach that spreads a large number of service instances on 
multiple servers to be resilient to server failures, and even to multiple zones and regions to be resilient 
to data center outages. They are based on auto-scaling mechanisms that quickly scale out 
infrastructure, spinning machines up and down to dynamically support demand in a cost-efficient way. 
Kubernetes was built to satisfy such requirements.
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What is a High-Performance System?

 

A high-performance system with scale-up architecture is one in which workloads are running across 
multiple machines, requiring high-speed, low-latency networking and software programs that can run 
distributed processes for parallel computing.



High-performance systems support workloads for data science, big data analytics, AI, and HPC. In these 
scenarios the infrastructure should support tens to thousands of long-running workloads concurrently, not 
millions of short, concurrent service requests as is the case with microservices. AI workloads run to 
completion, starting and ending by themselves without user intervention (called 'batch jobs', which we will 
address in more detail later), typically for long durations ranging from hours, days and in some cases even 
for weeks.



Infrastructure for data science and HPC needs to have the capability to host compute-intensive workloads 
and process them fast enough. It is therefore based on high end, expensive hardware, including in some 
cases specialized accelerators like GPUs which typically results in high cost per workload/user.

Scheduling for High-Performance Systems

 

For high-performance systems to work efficiently, they need to enable large workloads that require 
considerable resources to coexist efficiently with small workloads requiring fewer resources. These 
processes are very different than the spread scheduling and scale-out mechanism required for 
microservices. They require scheduling methods like bin packing and consolidation to put as many 
workloads as possible on a single machine to gain efficiency of hardware utilization and reduce machine 
fragmentation. Reserved instances and backfill scheduling are needed to prevent cases where large 
workloads requiring multiple resources need to wait in queue for a long time and batch scheduling and 
preemption mechanisms are needed to orchestrate long running jobs dynamically according to priorities 
and fairness policies. In addition, elasticity is required to scale up a single workload to use more resources 
according to availability.

Batch workloads are jobs that run to completion unattended (i.e., without user intervention). Batch 
processing and scheduling is commonly used in High Performance Computing (HPC) but the concept 
can easily be applied to data science and AI. With batch processing, training models can start, end, and 
then shut down, all without any manual intervention. Plus, when the container terminates, the resources 
are released and can be allocated to other workloads.



The scheduler that is native to Kubernetes does not use batch scheduling methods like multi-queue 
scheduling, fairness, advanced preemption mechanisms, and more, all of which are needed to 
efficiently manage the lifecycle of batch workloads. With such capabilities jobs can be paused and 
resumed automatically according to predefined priorities and policies, taking into account the fluctuating 
demands and the load of the cluster. Batch scheduling also prevents jobs from being starved by heavy 
users and ensures fairness between multiple users sharing a cluster.


Batch Scheduling Explained
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Another challenge of running AI workloads on Kubernetes relates to a concept called ‘topology awareness’. 
This refers to:minter-node communication an�
�� how resources within a node inter-connect



These two topological factors that have major impact on the runtime performance of workloads. In clusters 
managed by a centralized orchestration system, the responsibility of provisioning resources and optimizing 
allocations according to these topological factors is at the hands of the cluster manager. Kubernetes has 
not yet addressed topology awareness efficiently, resulting in lower performance when sub-optimal 
resources are provisioned. Performance inconsistency is another issue -workloads may run at maximum 
speed, but often poor hardware setup leads to lower performance.



Scheduler awareness to the topology of interconnect links between nodes is important for distributed 
workloads with parallel workers communicating across machines. In these cases, it is critical that the 
scheduler binds pods to nodes with fast interconnect communication links. For example, nodes located in 
the same rack would typically communicate faster and with lower latency than nodes located in different 
racks. The default K8s scheduler today does not account for inter-node communication. 



Another important aspect of topology awareness relates to how different resources within a node are 
communicating. Typically, multiple CPU sockets, memory units, network interface cards (NICs), and multiple 
peripheral devices like GPUs, are all set up in a node in a topology that is not always symmetric. For 
example, different memory units can be connected to different CPU sockets and a workload running on a 
specific CPU socket would gain the fastest read/write data access when using the memory unit closest to 
the CPU socket. Another example would be a workload running on multiple GPUs in a node with non-
uniform topology of inter-GPU connectors. Provisioning the optimal mix of CPUs, memory units, NICs, 
GPUs, etc., is often called NUMA (non-uniform memory access) alignment.

 

Topology awareness relating to NUMA alignment has been addressed by Kubernetes but the current 
implementation is limited and highly inefficient - the Kubernetes scheduler allocates a node for a 
workload without knowing if CPU/memory/GPU/NIC alignm      ent can be applied. If such alignment is not 
feasible on the chosen node, best-effort configuration would run the workload using a sub-optimal 
alignment while restricted configuration would fail the workload. Importantly, sub-optimal alignment and a 
failure to run a workload can occur even in cases where other nodes that can satisfy NUMA alignment are 
available in the cluster.



The limitations of topology-awareness relate to a basic flaw in Kubernetes architecture. The scheduling 
mechanism of Kubernetes is based on splitting responsibilities between the scheduler which operates at the 
cluster level and Kubelet which operates at the node level. The scheduler allocates nodes for containers 
based on information about the number of resources available in each node, without being aware of the 
topology of the nodes, the topology of the resources within a node, and which exact resources are actually 
available at a given moment. Kubelet, together with components of Linux OS and device plugins, is 
responsible for scheduling the containers and for allocating their resources within the node. This 
architecture is perfect for orchestrating microservices running within a node, but fails to provide high, 
consistent performance when orchestrating compute-intensive jobs and distributed workloads.



Compare  in another guide from this series.
Kubernetes vs Slurm schedulers
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What is Topology Awareness?
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https://www.run.ai/guides/slurm/slurm-vs-lsf-vs-kubernetes-scheduler-which-is-right-for-you


The third AI-focused component missing from Kubernetes is gang scheduling. Gang scheduling is used 
when containers need to be launched together, start together, and end together. For example, this capability 
is required for distributed workloads to ensure that different containers are launched on different nodes 
only when enough resources are available, preventing inefficiencies and dead-lock situations where one 
group of containers are launched while others are waiting for resources to become available. Gang 
scheduling can also help with recovery when some of the containers fail, without requiring a restart of the 
entire workload.



Compare  in another guide from this series.Kubernetes vs Slurm schedulers

Run:AI’s Scheduler plugs into Kubernetes clusters to enable optimized orchestration of high-performance AI 
workloads�

� High-performance system - for scale-up infrastructures that pool resources and enable large workloads 
that require considerable resources to coexist efficiently with small workloads requiring fewer resources�

� Batch Scheduling - training models can start, pause, restart, end, and then shut down, all without any 
manual intervention. Plus, when the container terminates, the resources are released and can be 
allocated to other workloads for greater system efficiency�

� Topology awareness— inter-resource and inter-node communication enable consistent high 
performance of AI workloads�

� Gang Scheduling - containers can be launched together, start together, and end together for distributed 
workloads that need considerable resources.



Run:AI simplifies Kubernetes scheduling for AI workloads, helping data scientists accelerate their 
productivity and the quality of their models. Learn more about the Run:AI platform.
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We have authored in-depth guides on several other artificial intelligence 
infrastructure topics that can also be useful as you explore the world of 
deep learning GPUs.

See Our Additional Guides on Key Artificial 
Intelligence Infrastructure Topics

Gang Scheduling

Kubernetes Scheduling with Run:AI
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MLOps

Learn how to assess GPUs to determine which is the best GPU for your deep learning model. Discover 
types of consumer and data center deep learning GPUs. Get started with PyTorch for GPUs – learn how 
PyTorch supports NVIDIA’s CUDA standard, and get quick technical instructions for using PyTorch with 
CUDA. Finally, learn about the NVIDIA deep learning SDK, what are the top NVIDIA GPUs for deep learning, 
and what best practices you should adopt when using NVIDIA GPUs�

�
�
�

Best GPU for Deep Learning: Critical Considerations for Large-Scale A�
PyTorch GPU: Working with CUDA in PyTorc�
NVIDIA Deep Learning GPU: Choosing the Right GPU for Your Project

In today’s highly competitive economy, enterprises are looking to Artificial Intelligence in general and 
Machine and Deep Learning in particular to transform big data into actionable insights that can help them 
better address their target audiences, improve their decision-making processes, and streamline their supply 
chains and production processes, to mention just a few of the many use cases out there. In order to stay 
ahead of the curve and capture the full value of ML, however, companies must strategically embrace 
MLOps.

See top articles in our MLOps guide

�

�
�
�

Machine Learning Ops: What is it and Why We Need I�
Machine Learning Automation: Speeding Up the Data Science Pipelin�
Machine Learning Workflow: Streamlining Your ML Pipeline
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Read more about how Run:ai supports 
data scientists here

www.run.ai/runai-for-data-science

Run:ai is an AI management platform for MLOps, Data Science, and DevOps teams. In addition to helping 
these teams access and utilize their GPU resources more effectively, it also has a powerful set of features 
that can abstract infrastructure complexities and simplify the process of training and deploying models. 
With or without a GPU shortage, Run:ai enables data scientists to focus on innovation without having to 
worry about resource limitations.

About Run:ai

GPUs for Deep Learning
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