
August 2023

IT & DATA SCIENCE 

Dynamic GPU
Memory: Solving the
Problem of Inefficient
Resource Allocation
in Inference Servers

Introduction

Fractional GPU with static memory allocation

Fractional GPU with dynamic memory allocation

Resolving memory collisions

Implementation in Kubernetes

‍Benefits of Dynamic GPU Memory

Conclusion

Table of contents

1/5

2

2

3

3

4

4

5

IT & DATA SCIENCE | Dynamic GPU Memory

In recent years, the demand for deploying inference servers and utilizing GPUs for various machine learning
tasks has increased significantly. However, a common challenge arises when it comes to optimizing GPU
memory usage for inference tasks. GPUs are becoming more powerful, equipped with larger memory
capacities, but not all inference models require such extensive memory resources. This discrepancy leads to
inefficient resource allocation, increased costs, and underutilization of GPU capabilities. In this blog, we will
explore the motivation behind dynamic GPU memory, discuss the challenges it poses, and introduce how
we at Run:ai address this problem.

Traditionally, when deploying models for inference, each model or inference server would occupy an entire
GPU, regardless of the actual memory requirements. This approach is suboptimal because many models do
not utilize the full memory capacity, resulting in wasted resources and increased costs. With modern GPUs
having abundant memory, it becomes essential to find a way to leverage this excess capacity and improve
GPU utilization.

Introduction

In Run:ai, fractional GPU refers to the practice of dividing a GPU into multiple logical partitions, each with
GPU memory allocation. In the case of static allocation, the user needs to pre-configure the amount of GPU
memory provisioned to each model or inference server.

This approach allows multiple inference servers to run on a single GPU, each with its own GPU memory
allocation. However, the GPU memory consumption of a single inference server varies according to the
input size and if the input size changes dynamically so is the GPU memory consumption.

For example, with dynamic batching, the GPU memory consumption is proportional to the instant batch
size. For language models the GPU memory consumption depends on the length of the input sequence,

for longer sequences the GPU memory consumption is larger. Fractional GPU with static memory allocation
assumes a worst-case scenario, allocating the maximum possible memory requirements. This results in
wasted GPU memory and higher costs.

Figure 1. Models with dynamic GPU memory consumption

Fractional GPU with static memory allocation

2/5

M o d e l A

Maximum

Consumption

Average

Consumption

Maximum

Consumption

Average

Consumption

M o d e l B

GPU 0 GPU 1

IT & DATA SCIENCE | Dynamic GPU Memory

Run:ai introduces dynamic GPU memory allocation as a solution for inference servers with dynamic GPU
memory consumption. Unlike traditional static memory allocation, dynamic allocation allows multiple
models to share a single GPU while adapting to their varying memory requirements in real-time. This
approach enables better utilization of GPU resources, reducing costs, and increasing GPU utilization.

Dynamic GPU memory allocation works by pre-configuring the amount of GPU memory provisioned to each
model or inference server as well as the amount of GPU memory to which the model can grow. This
flexibility allows for on-demand adjustment of memory allocation, ensuring that models only use the
memory they actually need for inference tasks.

Fractional GPU with dynamic memory allocation

3/5

M o d e l A

Available memory
for bursts

GPU 0

Figure 2. Deployment with dynamic GPU memory allocation

In case multiple inference servers simultaneously try to use burstable resources, causing a potential
memory collision, the Run:ai system detects and resolves it in runtime. This ensures that memory collisions
do not introduce OOM events which can lead to downtime and degraded SLA.

The system provides multiple memory collision resolvers which users can control�
�� A wait-and-retry resolver ensures that only one of the inference servers receives access to the GPU

memory resources while the other servers wait until the resources get freed�

�� Priority resolver ensures that pods with higher priority will get burstable resources when needed, by
terminating processes from other pods which are either idle for a configurable amount of time, or of a
lower priority�

�� Swap Resolver allows the multiple servers to time-share the GPU memory by swapping memory between
the CPU and GPU and ensuring consistency and fairness.

These memory collision resolvers provided by Run:ai allow users to handle memory collisions without
requiring code changes or manual handling within their applications. Users have the flexibility to choose the
appropriate resolver based on their specific requirements and preferences.

Resolving memory collisions

IT & DATA SCIENCE | Dynamic GPU Memory

Run:ai’s fractional GPU with dynamic GPU memory allocations enables the following benefits�
�� Efficient Resource Allocation: Run:ai's dynamic GPU memory allocation ensures that models only utilize

the necessary memory, preventing wastage of valuable resources�
�� Cost Savings: By running multiple models on a single GPU and dynamically adjusting memory allocation,

organizations can significantly reduce costs by optimizing GPU utilization and avoiding unnecessary
memory provisioning�

�� Increased Flexibility: With dynamic memory allocation, organizations can adapt to changing workload
requirements without the need for manual reconfiguration, allowing for greater flexibility and scalability.

‍Benefits of Dynamic GPU Memory

4/5

In Kubernetes, resource request and resource limit values are used to define the CPU and memory
requirements of a containerized application.

The resource request value represents the amount of CPU and memory resources that a container expects
to use on a node. It is used by the Kubernetes scheduler to make decisions about where to place the
container. The request value is typically set based on the average resource usage of the application.

The resource limit value, on the other hand, sets an upper bound on the amount of CPU and memory that a
container can use. It is used for resource allocation and to enforce resource isolation between containers
running on the same node. If a container tries to exceed its limit, Kubernetes may take actions such as
throttling or terminating the container.

Example of a K8s pod with request/limit for CPU and memory:

Run:ai's dynamic GPU memory capability allows users to specify different request and limit values for GPU
memory, similar to how Kubernetes allows different request and limit values for CPU and memory.  
This means that users can set a lower request value based on the average case and allocate more GPU
memory up to the limit value when there is a larger input or the workload requires burstable resources.

Implementation in Kubernetes

Dynamic GPU Memory with Run:ai

apiVersion:
kind:
spec: 
 containers: 

name:
 image:
 resources: 
 requests: 
 memory:
 cpu:
 limits: 
 memory:
 cpu:

v1 
Pod 

app 
images.my-company.example/app:v4 

"64Mi" 
"250m" 

"128Mi" 
"500m"

 -

IT & DATA SCIENCE | Dynamic GPU Memory

https://www.youtube.com/watch?v=mE-SbPQBVHk&ab_channel=Run%3AaiOfficial

Dynamic GPU memory allocation is a crucial solution to the problem of inefficient resource allocation in
inference servers. With Run:ai's fractional GPUs and intelligent memory management, organizations can
optimize GPU utilization, reduce costs, and improve performance of inference servers while maintaining the
required SLA. By dynamically adjusting GPU memory allocation based on real-time usage and specific
model requirements, Run:ai enables organizations to make the most of their GPU resources and streamline
their machine learning operations. Embracing dynamic GPU memory allocation with Run:ai paves the way
for more efficient and cost-effective deployment of inference models in production environments.

Conclusion

5/5

Read more about how Run:ai supports
data scientists here

www.run.ai/runai-for-data-science

Run:ai is an AI management platform for MLOps, Data Science, and DevOps teams. In addition to helping
these teams access and utilize their GPU resources more effectively, it also has a powerful set of features
that can abstract infrastructure complexities and simplify the process of training and deploying models.
With or without a GPU shortage, Run:ai enables data scientists to focus on innovation without having to
worry about resource limitations.

About Run:ai

IT & DATA SCIENCE | Dynamic GPU Memory

https://www.run.ai/runai-for-data-science
https://www.run.ai/platform

	Benchmarking Report
	Benchmarking Report-1
	A4 - 60
	A4 - 65
	A4 - 66
	A4 - 67

