
A Benchmarking Study:

Which serving
technology to choose
for LLMs?

January 2024 | Omer Dayan ∙ Ekin Karabulut ∙ Noa Neria

Abstract

This benchmarking study assesses the performance of large language
models (LLMs) through an exploration of model-serving frameworks,
focusing on the critical aspect of throughput. Evaluating engines such as
TensorRT-LLM, vLLM, and inference servers like RayLLM with RayServe, TGI,
and TensorRT-LLM with Triton, the study aims to provide valuable insights
for machine learning practitioners in optimizing their projects. Our
experiments uncover the importance of strategic preemption
mechanism in the management of the KV cache memory. The
importance of this strategy stems from the generation process being
memory bound, sequence length considerations specific to engines and
the impact of the model size on the throughput. Besides comparing
different servers and engines, our experiments were designed to
compare the performance of two strategies for management of the KV
cache: preemption versus strict reservation. Our main finding is that for a
limited amount of GPU memory and varied lengths of output size, the
best strategy was proved to be preemption. Other notable findings
include the delicate trade-offs in memory allocation, vLLM's remarkable
concurrency handling, and the influence of server selection on overall
throughput, as TensorRT-LLM with Triton outperforms TensorRT-LLM alone
in high Query per Second (QPS) rates. The study offers publicly accessible
benchmarking scripts and a detailed analysis, making it a valuable asset
for the community looking to enhance LLM deployment in production
environments. We encourage everyone to contribute with new tools and
utilize for their own performance
experimentation.

our publicly available scripts

2

Benchmarking Report November 2023

https://github.com/run-ai/llmperf

Benchmarking Report

Table of contents

3

Introduction 4

Components of LLM serving 5

Memory Management of KV cache 6

Preemption Mechanism 6

Reservation 6

Frameworks 7

Engines 7

Servers 8

Metrics for LLM Serving 9

Throughput 9

Latency 9

Experiment Setup 9

Experiment Results 10

Experiment #1 10

Experiment #2 12

Experiment #3 13

Experiment #4 15

Experiment #5 17

Discussion & Conclusion 19

Memory Allocation: A Critical Consideration 19

Preemptions: A Strategic Trade-off 19

Sequence Length Insight for Specific Engines 19

Model Size's Influence on Throughput 19

Impact of server selection 20

Future Work 20

GPU Parallelism on a single node (Distributed Serving Techniques) 20

Multi-Node Setting 20

Deeper Dive into Latency 20

Engine-Server Combination Discovery 20

References 21

Appendix 21

Introduction

The rapidly growing interest in leveraging large language models (LLMs) for a wide array of applications has
led to extensive exploration within both the industry and the open-source community. As the demand for
these models in production environments continues to rise, the need to assess their performance, alongside
the available tools and frameworks, becomes increasingly significant.

This benchmarking study takes a deep dive into model-serving frameworks with a specific focus on the critical
performance aspect of throughput. By examining various precisions, input sizes, and output sizes, and
evaluating inference engines such as TensorRT-LLM, vLLM and inference servers such as RayLLM with
RayServe, TGI and TensorRT-LLM + Triton, we aim to provide ML practitioners with some insights to make
informed decisions for their own projects.

To complement this benchmarking study, we have published an accompanying that explains the
generation process of LLMs, covering state-of-the-art techniques employed in the tools assessed in this study.
This resource serves as a detailed reference for readers seeking a deeper understanding of the methodologies
employed. We encourage readers who wish to dive deeper into the details of these techniques to explore the
blog post first.

To further advance the transparency and collaboration, we have publicly released
used in our experiments. This repository allows others not only to verify and replicate our results but also to
build upon this research by introducing new frameworks or techniques into the evaluation.

blog post

the benchmarking scripts

4

Benchmarking Report

https://www.run.ai/blog/serving-large-language-models
https://github.com/run-ai/llmperf

Components of LLM serving

End Users Server

Application

Application

Application

Application

Multiple Requests

Query Queue

Scheduler

Hardware (GPU / CPU)

Metrics (Throughput, Latency etc.)

Requests as Queries

HTTP / gRPC

Query Response

HTTP / gRPC

Engine Memory and Model Optimisation

Dynamic Batching

(Continuous / Inflight)

Query Response

Models with different backends

(Pytorch / Tensorflow or others etc) Multi-model

Management Model

Registry

Figure 1: Architecture of servers and engines

When it comes to serving LLM based applications, model serving can be divided into two components: engine
and server. At high level, the engine handles everything about the models and batching the requests, while the
server handles forwarding the user requests.

Engines
Engines are what run the models and everything that we covered so far about the generation process with
different types of optimization techniques. In their core, these are Python or C++ libraries. They handle
batching of the requests that are coming from users to our chatbot and generating the response for those
requests.

Servers
Servers are responsible for orchestrating the HTTP/gRPC requests coming in from the users. In real world
applications, we will have many users asking questions to our chatbot at different times of the day. Servers
queue these requests and forward them to the engine for the generation of the response. Servers also bring
the metrics such as throughput and latency, which are important to track for model serving.

5

Benchmarking Report

6

Benchmarking Report

Servers

FrameworksCapabilities

 TensorRT-LLM
 vLLM
 Text Generation Inference (TGI)

 NVIDIA Triton Inference Server
 Text Generation Inference (TGI)
 RayLLM with RayServe

 Memory management of KV-cache
(preemption, reservation)

 Memory optimization
 Model specific optimization
 Batching support

 HTTP/gRPC APIs
 Request queuing
 Multi-model serving
 Multi-engine support

Engines

Table 1: An overview of engine & server capabilities together with common frameworks

that offer these capabilities

Note: In this whitepaper, we expect the readers to know the basics of the LLM generation process and the
concepts such as continuous batching, KV-cache and PagedAttention. Please refer to our first, if
you need an overview of these state-of-art concepts.

blogpost

Memory Management of KV cache
Memory management of KV cache is a crucial aspect of LLM serving. It is handled by engines. There are 2
main policies; preemption and reservation.

Preemption Mechanism
Preemption is a central technique in the KV cache management, particularly when system capacity is
overwhelmed with requests. The engines with this mechanism adopt a first-come-first-serve (FCFS) policy,
prioritizing the processing of requests based on their arrival time, which mitigates the risk of any request being
perpetually delayed (starvation). When the GPU cache becomes saturated with data, the system must decide
which blocks to evict to make room for new ones. As an example, an all-or-nothing eviction policy can be
utilized, which means that all blocks related to a particular sequence, or a related group of sequences, are
evicted or maintained together to account for potential data dependencies [1]. To manage evicted blocks,
techniques like swapping—copying blocks to CPU memory—or recomputation—regenerating KV cache data
when needed—are deployed. The strategy ensures effective utilization of available GPU memory resources
while considering the interdependencies between sequence groups and the need to recover evicted data
efficiently.

Reservation
The reservation strategy differs from preemption in that it aims to avoid the necessity of evicting KV cache by
allocating sufficient resources ahead of time. Through reservation, a portion of the GPU memory is allocated
specifically for the KV cache needs of a particular sequence. This approach seeks to guarantee that essential
data resides in the GPU memory as long as required, thus avoiding the latency associated with eviction and
subsequent data recovery. By predicting the KV cache size needed for a given length of input and reserving
that space in advance, the engine can ensure a smoother execution flow. However, the reservation method
must be well-calibrated to optimize memory utilization and prevent over or under-provisioning, which could
lead to inefficiencies or a need for eventual preemption respectively.

https://www.run.ai/blog/serving-large-language-models

7

Benchmarking Report

Frameworks
In this section, we delve into the details of the key frameworks used in our benchmarking study. We only
choose a limited amount of frameworks for our experiments. Each framework has a unique value in optimizing
and enhancing the performance of Large Language Models (LLMs) during inference. We'll explore the
innovative features and capabilities of each framework, shedding light on how they contribute to the state of
the art in model serving. To start off; we will present them in two categories: engines and servers.

Engines

NVIDIA TensorRT-LLM (TRT-LLM)
 An open-source library designed to accelerate and optimize inference performance on the latest LLMs

using NVIDIA Tensor Core GPUs [2][3].
 Wraps TensorRT’s Deep Learning Compiler, optimized kernels from FasterTransformer, pre- and post-

processing, and multi-GPU/multi-node communication in a simple, open-source Python API for defining,
optimizing and executing LLMs in production

 Utilizing tensor parallelism, TensorRT-LLM allows for efficient inference at scale across multiple GPUs and
servers without the need for extensive developer intervention.

 Includes highly optimized, ready-to-run versions of popular LLMs, such as Meta Llama 2, OpenAI GPT-2
and GPT-3, Falcon, Mosaic MPT, and more.

 Provides a C++ runtime for executing LLM engines, offering features like PagedAttention, token sampling
and KV cache management, further enhancing the efficiency of inference.

 Supports in-flight batching, also known as continuous batching or iteration-level batching. This is a
technique that aims at reducing wait times in queues, eliminating the need for padding requests, and
making higher GPU utilization possible.

 Aims to simplify the process of building and experimenting with new LLMs, providing peak performance
and customization without requiring deep knowledge of C++ or NVIDIA CUDA.

vLLM
 A high-performance library tailored for LLM inference and serving, emphasizing state-of-the-art serving

throughput and efficient management of attention [1][4].
 Memory efficiency and high throughput are at the core of vLLM, thanks to its innovative PagedAttention

mechanism. This approach optimizes memory allocation and allows for non-contiguous KV cache,
translating into higher batch sizes and cost-effective serving [5].

 Includes support for continuous batching, GPU parallelism, streaming output, and OpenAI compatibility.
 Provides a Python API for conducting offline batched inference on datasets, establishing API servers for

LLMs, and launching OpenAI-compatible API servers.

https://github.com/NVIDIA/TensorRT-LLM
https://github.com/vllm-project/vllm

8

Benchmarking Report

Servers

RayLLM
 Built on Ray Serve, RayLLM benefits from a distributed compute framework that provides specialized

libraries for data streaming, training, fine-tuning, hyperparameter tuning, and serving, simplifying the
development and deployment of large-scale AI models [6].

 Supports deployment of multi .
 It provides server capabilities while engine capabilities are provided by integrations such as continuous

batching, paged attention, and other optimization techniques through TGI and vLLM integration.

model endpoint

Note: In this whitepaper, we benchmark RayLLM with vLLM engine

NVIDIA Triton Inference Server with TensorRT-LLM
 An open-source inference serving software that provides the ability to deploy models at scale in production

environments. It supports various machine learning frameworks and is designed for high throughput and
low latency inference workloads.

 Triton complements TensorRT-LLM by offering a solution for optimizing, deploying, and running Large
Language Models (LLMs).Triton, as the server, interacts seamlessly with the TensorRT-LLM engine, utilizing
techniques such as in-flight batching and paged KV-caching, while leveraging the advantages of TensorRT-
LLM for rapid inference execution [7].

Text Generation Inference (TGI)
 A Rust, Python, gRPC server, used at HuggingFace to power HuggingChat, the Inference API and Inference

Endpoint.
 Utilizes tensor parallelism (Accelerate) for faster inference on multiple GPUs
 Supports continuous batching for increased throughput, quantization, Paged and FlashAttention, token

streaming using Server-Sent Events (SSE) and many more
 Logits warper (different parameters such as temperature,repetition penalty, top-k, top-n, etc.)
 Supports optimized set of specific LLMs

To provide an overview of the frameworks' capabilities, we present Table 2, which compares the engine and
server features of the selected frameworks.

C++ runtime OpenAI

compatibility

GPU

parallelism

KV-cache

management

policy
Continuous

batchingPagedAttention
Engines

TensorRT-LLM reservation(pipeline &

tensor parallelism)

vLLM preemption(tensor parallelism)

Servers

reservation
RayLLM (with

vLLM)

reservation(pipeline &

tensor parallelism)

Triton (with

TensorRT-LLM)

Engine & Server

reservationTGI

Table 2: Comparison of the engine and server capabilities

https://github.com/ray-project/ray-llm
https://docs.ray.io/en/releases-2.6.1/serve/deploy-many-models/multi-app.html
https://github.com/triton-inference-server/tensorrtllm_backend
https://github.com/huggingface/text-generation-inference/tree/main

9

Benchmarking Report

Metrics for LLM Serving
When it comes to serving these models, there are two important metrics that needs to be underlined [9]:

Throughput
Throughput stands for the number of generated tokens per second by the inference server throughout the
multiple requests by the users. The higher the throughput, the better.

Latency
Latency represents the time taken by the server and model to generate the whole output in the output
sequence. If the generated output is streamed to the end user, then it represents the time taken by the
inference server to generate the very first token (also called time to first token (TTFT)).

While latency holds significance as an inference metric, it falls outside the scope of this whitepaper's focus.
Our emphasis remains on understanding and optimizing throughput for effective language model serving.

Experiment Setup
In this study, we emphasize the critical aspect of throughput, a key metric for assessing real-time performance
in the deployment of large language models. To address it comprehensively, we conduct a series of
experiments, each configured to explore a different facet of inference performance. Here's a concise overview
of each experiment:

Experiment #1 Throughput Dynamics with QPS and Batch Size

Explored throughput dynamics of vLLM and TensorRT-LLM with varying Query Per Second (QPS)

and batch size.

Experiment #2 Preemption Mechanisms Analysis

Analyzed preemption mechanisms in vLLM by varying batch sizes. Explored factors contributing to
throughput peaks and degradation observed in Experiment #1.

Experiment #3 Throughput with Various Query Rates and Variant Input

exploration to multiple frameworks, examining throughput under different query rates and varied input.
Comparing performance of vLLM, TensorRT-LLM, TGI, RayLLM, and TensorRT-LLM with Triton.

Experiment #4 Throughput Analysis of vLLM and TGI from a Memory Perspective

Investigated the effect of available memory for the KV-cache on throughput. Explored memory constraints'
impact on vLLM, TensorRT-LLM, and TGI.

Experiment #5 Real-Life Scenario: Impact of Model Size Increase & Variant Input/Output

Replicated a real-life scenario by increasing model size to Llama-2-13b-chat and introducing variant input/
output lengths. Evaluated throughput performance of vLLM, TensorRT-LLM, RayLLM, TGI, and TensorRT-LLM
with Triton.

10

Benchmarking Report

All experiments detailed in this paper are conducted on a single NVIDIA A100 GPU with 40 GB of memory.
The tools under consideration include TensorRT-LLM (max utilization as scheduling policy), vLLM, RayLLM
with vLLM, Triton Inference Server with TensorRT-LLM, and TGI. We conduct all experiments with Llama-2
models, specifically Llama-2-7b, Llama-2-7b-chat and Llama-2-13b-chat. For the experiments, where we
examine the throughput with variant input/output sequence length, we use ShareGPT dataset.

Notably, for TensorRT-LLM, a crucial step involved the creation of an engine before serving the model. This
engine requires input and output sequence length, as well as batch size parameters, and is tailored
accordingly. In experiments where the sequence length is known, we employed the specific sequence length
for engine creation. Conversely, for experiments with variant sequence lengths, we crafted the engine using
the highest sequence length parameters offered by TensorRT-LLM, which is 2048.

Due to the fact that the details of the experiments vary depending on our findings in each experiment, we also
provide a table with the setting in the next chapter. Please refer to the tables for a better overview on the
setting of the specific experiment.

To ensure the robustness of our findings, each experiment is repeated ten times, and the results are reported
as the average of these ten iterations to minimize variance. Furthermore, the scripts and input sequences used
in these experiments are publicly available in our repository, facilitating transparency and reproducibility.

Experiment Results
Experiment #1 Throughput Dynamics with QPS and Batch Size

In the initial experiment, we investigated throughput dynamics on engines by varying Query Per Second (QPS)
and batch size for vLLM and TensorRT-LLM. Our focus was on understanding how these engines handle
continuous batching under a heavy load of user requests, using a fixed input/output sequence length.

Experiment Setting

Model Llama-2-7b

Maximum batch size Max-num-seq (vLLM) [64, 96, 128, 160, 192, 224, 256]

Query per second (QPS) [32, 64, 96, 128]

Input token size 128

Output token size 128

Frameworks TensorRT-LLM & vLLM

Table 3: Experiment Setting to measure throughput with QPS and batch size. We measure token generation
throughput with continuous batching as a function of query rate and number of parallel sequences.

11

Benchmarking Report

QPS Batch

64

32(QPS)

2272

2492

2691

2584

2833

2665

2596

64(QPS)

2295

2521

2727

2615

2852

2666

2636

96(QPS)

2315

2608

2730

2621

2761

2670

2598

128(QPS)

2390

2655

2732

2637

2782

2680

2615

96

128

160

192

224

256

Table 4: vLLM throughput results

QPS Batch

64

32(QPS)

2485

2866

3246

3146

3223

3223

3230

64(QPS)

2596

2892

3344

3222

3166

3043

3028

96(QPS)

2612

2861

3345

3206

3185

2971

2949

128(QPS)

2585

2812

3343

3181

3164

2943

2926

96

128

160

192

224

256

Table 5: TensorRT-LLM throughput results

A noteworthy finding emerges: Both engines exhibit a throughput peak for a specific batch size, with
degradation observed beyond this peak. The underlying reasons for this behavior are explored in the next
experiment.

12

Benchmarking Report

Experiment #2 Preemption Mechanisms Analysis

Building on the insights from the previous experiment, we hypothesize that preemption mechanisms in vLLM
contribute to the observed behavior. To investigate, we use vLLM with the configuration that yielded peak
throughput in the prior experiment—varying batch sizes from 128 to 288 (also called max-num-seq in vLLM
terms), and send 64 queries per second. Preemptions start occuring at a batch size of 192, increasing with
larger batch sizes, a value coinciding with the throughput peak observed in the earlier experiment. Beyond this
threshold, as we increased the batch size further, a decrease in throughput was noted. In the result of this
experiment, we can see that the number of preemptions keep increasing when we increase the batch size
further than 192.

Note: This experiment is exclusive to vLLM due to the limited open-source nature of TensorRT-LLM.

Experiment Setting

Model Llama-2-7b

Max-num-seq (vLLM) [128, 144, 160, 176, 192, 208, 224, 240, 256, 272, 288]

Query per second (QPS) 64

Input token size 128

Output token size 128

Frameworks vLLM

Table 6: Experiment setting to measure preemption rate as a function of batch size

150 175 200 225 250 275

2500

2000

1500

1000

500

0

Batch size

P
re

em
p

ti
o

n
s

Preemptions / Batch size

Figure 2: Number of preemption actions taken dependent on the batch size for user requests.

See for the table of resultsAppendix

13

Benchmarking Report

Experiment #3 Throughput with various query rates and variant input for servers and engines

Experiment Setting

Model Llama-2-7b

Query per second (QPS) [1, 2, 4, 8, 16, 32, 64, 128]

Input token size Variant

Output token size Predefined in each request, derived from the shareGPT prompt

Frameworks vLLM & TensorRT-LLM & RayLLM & TensorRT-LLM with Triton & TGI

Table 7: Experiment setting to evaluate the throughput of vLLM, TensorRT-LLM, RayLLM, TensorRT-LLM with
Triton and TGI

QPS

1

vLLM

228

444

890

1454

1548

1552

1557

1557

TensorRT-LLM

244

480

944

1242

1498

1500

1490

1490

TGI

239

478

341

1509

1514

1521

1524

1526

RayLLM with vLLM

2596

474

326

1199

1206

1215

1211

1206

TensorRT-LLM

with Triton

2596

475

930

1064

170

1093

1076

1090

2

4

8

16

32

64

128

Engines Engine & Server

Table 8: The throughput results with various QPS rates

14

Benchmarking Report

In this experiment, we compare vLLM, TRT-LLM, TGI, vLLM with RayLLM and TRT-LLM with Triton Inference
Server. Our goal is again to examine the throughput when servers and engines are fully loaded with user
requests (QPS) and create a queue of requests. As batch size of vLLM and TRT-LLM, we perform an
intermediate experiment to determine the optimal batch sizes and choose the best performed values from that
experiment, namely 128 for vLLM and 64 for TensorRT-LLM. We see similar results for each server at both
high and low QPS values. At QPS=8, TensorRT-LLM performs slightly worse than TGI and vLLM, but the values
converge as QPS increases to 16. We see that all frameworks exhibit a backlog of requests between a QPS of
8 and 16. Apart from that, we also observe overhead when engines are used with servers. It is worth noting
that the throughput is getting stabilized after a point, no matter which engine or server is used.

vLLM TRT-LLM TGI RayLLM Triton TRT-LLM

2000

1500

1000

500

0
1 2 4 8 16 32 64 128

Figure 3: The throughput results with various QPS rates

15

Benchmarking Report

Experiment #4 Throughput analysis of vLLM, TensorRT-LLM and TGI from memory perspective

Experiment Setting

Model Llama-2-7b

Llama-2-7b-chat

Approximate GPU Memory fraction for KV cache [1, 2, 4, 8, 16, 32, 64, 128]

Query per second (QPS) 32

Input token size Variant

Output token size Not specified, model generates EOS

Frameworks vLLM & TensorRT-LLM & TGI

Table 9: Experiment setting for memory analysis

In this experiment, we investigated the impact of available memory for the KV-cache on throughput. To
evaluate this, we use two different versions of Llama-2-7b:

 	Llama-2-7b, which generates relatively long output sequences until it hits the EOS token.
 	Llama-2-7b-chat, which generates relatively short output sequences until it hits EOS token in comparison

to Llama-2-7b.

The experiment also involved limiting GPU memory, used for KV cache. Parameters were adjusted using the

 parameter for TensorRT-LLM, for TGI, and
 for vLLM.

We observed that some engines did not perfectly align with the specified memory fractions, so we manually
noted the GPU memory each framework allocated. The model parameters took approximately 15 GB of
memory in half precision (float16) on the GPU. The table below displays the GPU memory and approximate
fraction that parameters and the KV cache took together.

kv_cache_free_gpu_mem_fraction cuda_memory_fraction gpu-
memory-utilization

https://nvidia.github.io/TensorRT-LLM/gpt_runtime.html#session-configuration
https://huggingface.co/docs/text-generation-inference/basic_tutorials/launcher#cudamemoryfraction
https://docs.vllm.ai/en/latest/models/engine_args.html#cmdoption-gpu-memory-utilization
https://docs.vllm.ai/en/latest/models/engine_args.html#cmdoption-gpu-memory-utilization

16

Benchmarking Report

Examining how memory allocation affects KV cache, we consistently observed improved throughput as
memory increased. In the context of the Llama-2-7b model, vLLM exhibits slightly better throughput
performance than TGI across various GPU memory fractions. Transitioning to the Llama-2-7b-chat scenario, a
notable disparity in throughput performance between TGI and vLLM becomes evident. Here, vLLM
outperforms TGI across all fractional memory allocations for KV cache, showcasing superior performance.
Importantly, even when we limit memory for the KV cache (17.7 GB), vLLM surpasses its performance with
Llama-2-7b, showcasing superior throughput.

When utilizing TensorRT-LLM with both models, we see almost no difference in throughput and memory
consumption. While it performs nearly on par with vLLM for higher GPU memory availability in both models,
TensorRT-LLM underperforms compared to both engines when the KV cache memory is smaller, such as with
a 30 GB allocation. Under these conditions of

vLLM vLLM-Chat TGI TGI-Chat TRT-LLM TRT-LLM-Chat

1200

1000

800

600

400

200
20 25 30 35o

u
tp

u
t t

h
ro

u
g

h
p

u
t

(T
o

ke
n

/S
ec

)

GPU Memory (GB)

Figure 4: The output throughput of Llama-2-7b and Llama-2-7b-chat using vLLM, TGI and TensorRT-LLM
when GPU memory allocation is limited.

17

Benchmarking Report

Experiment #5 Creating a real life scenario: Impact of model size increase & variant input/output
sequence length to throughput

Experiment Setting

Model Llama-2-13b-chat

Batch size [32, 64, 96, 128, 256] for vLLM

[4, 8, 16, 32, 64] for TensorRT-LLM

Query per second (QPS) [1, 2, 4, 8, 16, 32, 64, 128]

Input token size Variant

Output token size Not specified, model generates EOS

Frameworks vLLM & TensorRT-LLM & RayLLM & TGI & TensorRT-LLM with Triton

Table 10: Experiment Setting for examining the throughput on a real life scenario.

In this experiment, we aimed to simulate a real-life scenario by exploring the impact of increased model size,
varying input/output sequence lengths, and their influence on throughput. Our objective was to understand
the engines' performance when fully loaded with user requests (QPS), creating a queue of requests in a
realistic use case. To challenge our memory constraints, we increased the model size to Llama-2-13b-chat and
waited until the model generated the end-of-sequence token (EOS).

We initiated the experiment by determining optimal batch sizes for both vLLM and TensorRT-LLM, surpassing
the processing speed, leading to a queue of requests.

Batch

4

8

16

32

64

TensorRT-LLM

261

345

328

355

OOM

Table 11: Throughput of TensorRT-LLM depending on various batch sizes (QPS = 32)

Batch

32

64

96

128

256

vLLM

525

561

561

560

509

Table 12: Throughput of vLLM depending on various batch sizes (QPS = 32)

18

Benchmarking Report

Due to an out-of-memory error at a batch size of 64 for TensorRT-LLM, further increments in batch size were
not included. The experiment proceeded with throughput measurements, utilizing batch sizes of 64 for vLLM
and 8 for TensorRT-LLM. For TGI, the highest max-batch-total-tokens fitting into machine memory was
employed.

Next, we move to the throughput experiment. Notably, TensorRT-LLM with Triton uses TensorRT-LLM and
RayLLM uses vLLM as engines. Therefore, we use the batch sizes of 64 and 16 in those experiments as well.
Due to memory restrictions, QPS values of 0.5, 1, 1.5, 2, 4, and 8 were tested.

QPS

0.5

vLLM

187

321

423

550

563

535

TensorRT-LLM

209

398

434

436

436

440

TGI

176

202

206

205

205

203

RayLLM with vLLM

178

346

478

479

470

468

TensorRT-LLM

with Triton

122

240

375

463

482

486

1

1.5

2

4

8

Engines Engine & Server

Table 13: Throughput results of frameworks with various QPS

vLLM TRT-LLM TGI RayLLM TRT-LLM Triton

600

400

200

0
2 4 6 8

 t
h

ro
u

g
h

p
u

t

QPS

Figure 5: : Throughput of various frameworks using Llama-2-13b with various QPS rates

Results indicated that vLLM outperformed other frameworks, followed by TensorRT-LLM with Triton and
vLLM-powered RayLLM for higher query rates. Around 2 QPS, all curves began stabilizing, suggesting a
backlog of user requests. Notably, throughput reached a stable state after a certain point, irrespective of the
framework used.

Discussion & Conclusion
Memory Allocation: A Critical Consideration
Serving a Large Language Model (LLM) involves managing two primary memory components: model
parameters and the Key-Value (KV) cache. While model parameters allocate static memory, the KV cache
dynamically expands and shrinks based on the number of requests and sequence lengths. The autoregressive
nature of LLMs and the large number of weights makes the generation process memory-bound rather than
compute-bound. Hence, achieving efficient LLM performance requires careful consideration of memory
allocation and consumption, recognizing them as essential optimization metrics.

Preemptions: A Strategic Trade-off
Our investigation reveals a shared characteristic among engines—specifically, vLLM and TensorRT-LLM —
employing preemptions to address memory constraints. In Experiment #2, vLLM strategically preempted the
KV cache under heavy request loads, mitigating memory challenges at the expense of increased computation.
Although TensorRT-LLM's closed-source nature prevented direct exploration in Experiment #2, its behavior in
Experiment #1 looks like it implies a similar preemption mechanism at first sight. However, the results of the
Experiment #4 implies that there is no such preemption mechanism implemented yet. The strategic approach
of preemptions underscores the delicate balance required for memory optimization and computational
efficiency in model serving.

Sequence Length Insight for Specific Engines
Certain engines, such as TensorRT-LLM and TGI, allocate memory on the GPU based on the expected KV
cache size for upcoming batch sizes and sequence lengths (reservation policy). The requirement for input and
output sequence length arguments (e.g., max-batch-total-tokens for TGI) and batch size is important. As an
example, if the maximum output isn’t specific in the request, TGI assumes the worst-case scenario
(max_total_tokens), which takes up a significant memory on the device. Experiment #3 demonstrates that
when the output sequence length matches the expected length, vLLM, TensorRT-LLM, and TGI exhibit similar
throughput performances. However, Experiment #4, which involves generating end-of-sequence tokens with
variant input sequences, reveals vLLM's superior throughput and ability to serve efficiently while being
memory-bound.

vLLM distinguishes itself by handling more requests concurrently, especially when the output is shorter, as
seen in Experiment #4 with the Llama-2-7b-chat model. This advantage positions vLLM for better
performance in processing multiple requests swiftly, particularly with shorter outputs.

Model Size's Influence on Throughput
An additional consideration applicable to all engines is the impact of model size on the throughput curve. As
the model size increases, there is an expected shift to the left in the throughput curve in Figure 4 due to limited
memory for batch size, which is needed for KV cahce (memory boundness). More GPU memory or a smaller
model allows for exploiting the remaining memory for higher batch sizes, leading to improved throughput.
However, it is crucial to recognize that this improvement reaches a threshold. Beyond a certain point,
additional GPU memory no longer contributes to higher throughput. This observation emphasizes the intricate
interplay between model size, GPU memory utilization, and achievable throughput in the context of language
model serving.

19

Benchmarking Report

Impact of server selection
Experiment #5 introduces the real-world scenario of server selection's influence on throughput. While
Experiment #3 hinted at potential overhead when using servers, Experiment #5 surprisingly reveals that
TensorRT-LLM with Triton outperforms TensorRT-LLM alone. This finding emphasizes the importance of
strategic server selection in enhancing engine performance and influencing overall throughput. A deeper
exploration of engine-server combinations promises more detailed insights into optimizing language model
serving setups.

GPU Parallelism on a single node (Distributed Serving Techniques)
While we used single node and single GPU in our experiments, a deeper exploration into distributed serving
techniques and their impact on throughput and latency could offer a more comprehensive view. Investigating
how different frameworks and engines scale in a distributed setting may uncover optimizations for achieving
even higher throughput and lower latency.

Multi-Node Setting
Extending our experiments to a multi-node setting could provide valuable insights into the scalability of the
evaluated frameworks. Assessing the performance of model-serving frameworks across multiple nodes will be
crucial for applications demanding distributed and highly available LLMs.

Deeper Dive into Latency
While our benchmarking study primarily focused on throughput as a key performance metric, a deeper
exploration into latency considerations is warranted. Understanding the time taken by the server and model to
generate output, particularly in real-time scenarios, will be essential for applications where responsiveness is
critical.

Engine-Server Combination Discovery
A deeper exploration of engine-server combinations promises more detailed insights into optimizing language
model serving setups.

As we conclude this benchmarking study, several topics present themselves for future exploration and
refinement of our findings. The following areas stand out as promising directions for advancing our
understanding of large language model (LLM) serving performance:

20

Benchmarking Report

Future Work

1 https://github.com/vllm-project/vllm

2 https://developer.nvidia.com/blog/nvidia-tensorrt-llm-supercharges-large-language-model-inference-on-nvidia-h100-gpus/

3 https://developer.nvidia.com/blog/optimizing-inference-on-llms-with-tensorrt-llm-now-publicly-available/

4 https://developer.nvidia.com/blog/optimizing-inference-on-llms-with-tensorrt-llm-now-publicly-available/

5 https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html

6 https://www.anyscale.com/blog/continuous-batching-llm-inference

7 https://docs.ray.io/en/latest/ray-overview/use-cases.html

8 https://github.com/triton-inference-server/tensorrtllm_backend

9 https://nvidia.github.io/TensorRT-LLM/architecture.html

10 https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices

21

Benchmarking Report

References

Appendix
Batch Size

128

144

160

176

192

208

224

240

256

272

288

Preemption Count Time (s) Rate (p/s)

0 Not relevant 0

0 Not relevant 0

0 Not relevant 0

0 Not relevant 0

26

485

1024

1294

1750

2107

2355

238

249

253

257

260

266

268

0.11

1.95

4.04

5.03

6.73

7.92

8.8

Table 14: Detailed overview of the preemption counts using vLLM ()Experiment #2

https://github.com/vllm-project/vllm
https://developer.nvidia.com/blog/nvidia-tensorrt-llm-supercharges-large-language-model-inference-on-nvidia-h100-gpus/
https://developer.nvidia.com/blog/optimizing-inference-on-llms-with-tensorrt-llm-now-publicly-available/
https://developer.nvidia.com/blog/optimizing-inference-on-llms-with-tensorrt-llm-now-publicly-available/
https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html
https://www.anyscale.com/blog/continuous-batching-llm-inference
https://docs.ray.io/en/latest/ray-overview/use-cases.html
https://github.com/triton-inference-server/tensorrtllm_backend
https://nvidia.github.io/TensorRT-LLM/architecture.html

