
Run:AI Platform

Run:AI abstracts workloads from underlying GPU and compute infrastructure, by creating a
shared pool of resources that can be dynamically provisioned, enabling full utilization of GPU
compute by various distributed teams within enterprises.

Data science and IT teams gain control and real-time visibility – including seeing and
provisioning run-time, queueing, and GPU utilization of each job. In addition to real time visibility
the platform also displays historical metrics of cluster resources allowing the enterprise to make
more informed, analytical decisions.

A virtual pool of resources enables
IT leaders and data scientists to
view and allocate compute
resources across multiple sites –
whether on-premises or in the cloud.

The Run:AI platform is built on top of
Kubernetes, enabling simple
integration with leading open source
frameworks used by data scientists.

Certified by both OpenShift and HPE
as a GPU scheduler since no default
tools exist in either Orchestration
Platforms.

https://catalog.redhat.com/software/operators/detail/60be3acc3308418324b5e9d8
https://www.hpe.com/us/en/software/marketplace/runai.html


Run:AI Scheduling Capabilities within Kubernetes

Capability K8s scheduler Run:AI scheduler for K8s

Scheduling jobs on GPUs ✅ ✅

Guaranteed quotas ✅

Automatic queueing/de-queueing​ ✅

Advanced priorities & policies​ ✅

Fairness scheduling algorithms​ ✅

Consolidation & Bin packing ✅

Automatic & dynamic job preemption​ ✅

Run jobs on GPU fraction ✅

Efficient management of distributed workloads​ ✅

● Scheduling jobs on GPUs - Both schedulers allow the allocation of GPUs to containers
orchestrated through Kubernetes. However, Kubernetes requires hard quotas that limit how many
GPUs can be used by departments in their respective namespaces. The Run:AI scheduler allows
you to virtualize the GPUs into a pool which can be allocated dynamically to the different
business units and individuals based on guaranteed quotas rather than just namespaces. This
allows teams to get access to more computing power, run more jobs, and essentially be more
productive. The usage of the hardware resources becomes more efficient with significantly higher
cluster utilization and reduced GPU idle times, thus eliminating the hard quota limit of default
Kubernetes.

The following capabilities which are critical for high GPU utilization and business units delivery are unique
to Run:AI and are not supported with the default Kubernetes scheduler :

● Guaranteed quotas
With the Run:AI scheduler and guaranteed quotas, the platform ensures that departments at
minimum can utilize a defined number of GPU resources. However the scheduler allows
departments to also exceed their quota and consume additional idle resources within the cluster
greatly increasing GPU utilization. Default Kubernetes scheduling only allows provisioning of
resources that are statically assigned to the respective namespace of the department.

● Automatic queueing/de-queueing
The Run:AI scheduler enables data scientists to easily queue many jobs at once that are
assigned automatically to available GPU resources based on advanced quotas and priorities,



policies and scheduling algorithms. Once the job has run to completion the workload is detached
from the GPU and made available to the next job for scheduling. Automatic
queueing/de-queueing allows administrators to take a hands off approach to resource allocation
and management while ensuring efficient sharing of resources.

● Advanced priorities & policies
Run:AI includes advanced features that prioritize different job types, define affinity for
departments, jobs and GPUs, and ensure termination of idle jobs that are consuming GPU
resources. There are a multitude of additional advanced features aimed particularly at data
scientists which include job elasticity, hyperparameter optimization, and advanced job reporting.

● Fairness scheduling algorithms
Fairness ensures that GPU resources are proportionally allocated to departments and the
respective projects. With default Kubernetes scheduling, resources will have to be statically
assigned to different namespaces and departments will only ever be able to consume resources
within their namespace. The fairness scheduling algorithms with Run:AI ensure that each project
can always utilize their guaranteed resources at any time while also exceeding these quotas to
run additional experimentation if idle resources are present. Fairness ensures projects are not
being starved by other noisy projects and that resources are always being allocated fairly
between the projects.

● Consolidation & Bin packing
The first step in avoiding fragmentation is bin packing where the Run:AI scheduler allocates
workloads to currently scheduled nodes before allocating workloads to unutilized
nodes.Additionally the scheduler is able to consolidate Jobs on demand. If a workload cannot be
allocated due to fragmentation, the scheduler will try to move unattended workloads from node to
node in order to get the required amount of GPUs to schedule the pending workload.

● Automatic & dynamic job preemption
The Run:AI scheduler ensures that mission critical workloads are always given highest priority
and scheduled onto GPU resources immediately. The scheduler allows the checkpointing and
pre-emption of certain workloads to ensure that resources are freed up in order to run higher
priority workloads or in order to ensure resources are allocated fairly between projects. In the
case of default Kubernetes scheduling, this would require manual intervention by an administrator
to find and delete a running workload in order to free up resources for the pending, higher priority
workloads.

● Run jobs on GPU fractions
The Run:AI scheduler allows the fractionalization of GPUs within the cluster. This allows multiple
workloads to run on a single GPU, increasing job density and experimentation across your
resources. With default Kubernetes scheduling, there will always be a one to one mapping
between containers and GPUs regardless of the underlying GPU resources that are required and
sufficient to run the workload.

● Efficient management of distributed workloads
The Run:AI scheduler supports distributed workloads that run across multiple nodes to
orchestrate large scale training jobs. It efficiently schedules these jobs to ensure efficient and fair
utilization of GPU resources within the cluster. Kubernetes can run distributed workloads however
it often causes starvation and fragmentation of the underlying resources.


