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Artificial Intelligence is a Completely
Different Ballgame

New Distributed Data
accelerators computing science
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Data Science Workflows and Hardware Accelerators
are Highly Coupled

Data - - Hardware

scientists .  -accelerators

Constant . Workflow éUnder-utiIizedg
hassles : Limitations :  GPUs
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The Run:Al Vision — Full Hardware Abstraction

Models N - Hardware

scientists accelerators
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But in real life ...

Distributed

computing
Pipelines
Notebooks
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Kubernetes, the “De-facto” Standard
for Container Orchestration

Lacks the
following
capabilities:

3

Multiple queues

Automatic queueing/de-queueing
Advanced priorities & policies
Advanced scheduling algorithms
Affinity-aware scheduling

Efficient management of distributed workloads
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Distinguishing Between Build and Training Workflows

S
Build O\J‘

 Development & debugging

* Interactive sessions

« Short cycles

« Performance is less important
 Low GPU utilization

Traininge—@

« Training & HPO

* Remote execution

* Long workloads

« Throughput is highly important
« High GPU utilization
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Fixed vs. Guaranteed Quotas

eoo0o Y XX )
Fixed quotas Guaranteed quotas
* Fits build workloads « Fits training workflows

* GPUs are always available « Users can go over quota

\/

More concurrent experiments
More multi-GPU training
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Jobs

Queueing Management Mechanism

Quotas + Priorities
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Use Case: Technology Enterprise

« Team of 20 deep learning researchers / \

« Dozens of GPUs on premises: Problem:

* High-end DGX servers
Unscalable system,

constantly buying
additional GPUs

« Static allocations
\ %

» Low-end GPU servers
Workstations
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Use Case: What We Discovered
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Average GPU Utilization

28%

LOW GPU UTILIZATION
Some peaks, but mostly
inefficient system and unused
resources

DIFFERENT USAGE PROFILES
‘Build’ “Train’ ‘Retrain’ with very
different needs
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New Architecture: Virtual Pool of GPU Machines

Kubernetes Cluster

(3) Interactive: ssh, Jupyter Notebook, Pycharm, etc.
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Researcher (3) Monitor only \\ GPU  GPU

+ Monitor
High-End Servers - Set Priorities ,ﬁ'
+ Set Business Policies
+

Admin

run:
al

15



>70%

Average GPU
utilization

Higher ROI

4 Months Later

2X

Experiments/
GPUs

Better Data
Science

Multi-GPU

training by
default

Faster
time-to-value

Simplified

workflows

Reduced
DS Hassles
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tury Thank
you

Contact: omri@run.ai



