
1
All rights reserved to Run:ai. 
No part of this content may be used 
without express permission of Run:ai. www.run.ai

Deep Learning with Multiple GPUs

Deep learning is a subset of machine learning that

does not rely on structured data to develop 

accurate predictive models. This method uses 

networks of algorithms modeled after neural 

networks in the brain to distill and correlate large 

amounts of data. The more data you feed your 

network, the more accurate the model becomes. 

You can functionally train deep learning models 

using sequential processing methods. However, 

the amount of data needed and the length of data 

processing make it impractical if not impossible to 

train models without parallel processing.

Parallel processing enables multiple data objects

to be processed at the same time, drastically

reducing training time. This parallel processing is

typically accomplished through the use of graphical 

processing units (GPUs). GPUs are specialized 

processors created to work in parallel. These units 

can provide significant advantages over traditional 

CPUs, including up to 10x more speed. Typically, 

multiple GPUs are built into a system in addition to 

CPUs. While the CPUs can handle more complex or 

general tasks, the GPUs can handle specific, highly 

repetitive processing tasks.

How to Use Multiple GPUs for Deep Learning



2

Multi GPU Distributed Deep Learning Strategies

TensorFlow Multiple GPU

GPU Server

Deep Learning GPU

How Does Multi GPU Work in Common Deep Learning Frameworks?

Multi GPU Deployment Models

Machine Learning Operations (MLops)

PyTorch Multi GPU

GPU Cluster

In this guide, you will learn:

Also refer to our other detailed guides about:

3

5

5

5

4

4

4

All rights reserved to Run:ai. 
No part of this content may be used 
without express permission of Run:ai. www.run.ai



Once multiple GPUs are added to your systems,

you need to build parallelism into your deep learning

processes. There are two main methods to add

parallelism—models and data.

Model parallelism is a method you can use when 

your parameters are too large for your memory 

constraints.

Using this method, you split your model training

processes across multiple GPUs and perform each

process in parallel (as illustrated in the image 

below) or in series. Model parallelism uses the same 

dataset for each portion of your model and requires 

synchronizing data between the splits.

Machine 4

Machine 1

Machine 1

Machine 3

Machine 2

Machine 4

Machine 2 Machine 3

Model Parallelism

Model Parallelism

Data Parallelism

Data parallelism is a method that uses duplicates of

your model across GPUs. This method is useful when

the batch size used by your model is too large to fit

on a single machine, or when you want to speed up

the training process. With data parallelism, each copy

of your model is trained on a subset of your dataset

simultaneously. Once done, the results of the models 

are combined and training continues as normal.

3

Multi GPU Deep Learning Strategies

Data Parallelism

All rights reserved to Run:ai. 
No part of this content may be used 
without express permission of Run:ai. www.run.ai



When working with deep learning models, there 

are several frameworks you may use, including 

Keras, PyTorch and TensorFlow. Depending on the 

framework you choose, there are different ways to 

implement multi GPU systems.

TensorFlow is an open source framework, created 

by Google, that you can use to perform machine 

learning operations. The library includes a variety of 

machine learning and deep learning algorithms and 

models that you can use as a base for your training. 

It also includes built-in methods for distributed 

training using GPUs.

Through the API, you can use the tf.distribute.

Strategy method to distribute your operations 

across GPUs, TPUs or machines. This method 

enables you to create and support multiple user 

segments and to switch between distributed 

strategies easily.

Two additional strategies that extend the distribute 

method are MirroredStrategy and TPUStrategy. 

Both of these enable you to distribute your 

workloads, the former across multiple GPUs and 

the latter across multiple Tensor Processing Units 

(TPUs). TPUs are units available through Google 

Cloud Platform that are specifically optimized for 

training with TensorFlow.

PyTorch is an open source scientific computing 

framework based on Python. You can use it 

to train machine learning models using tensor 

computations and GPUs. This framework supports 

distributed training through the torch.distributed 

backend.

TensorFlow PyTorch

4

How Does Using Multiple 
GPUs Work in Common 
Deep Learning Frameworks?

Both of these methods use roughly the same 
data-parallel process, summarized as follows:

With PyTorch, there are three parallelism (or 
distribution) classes that you can perform with 
GPUs. These include:

Your dataset is segmented so data is distributed as 
evenly as possible.

Data Parallel: enables you to distribute model 
replicas across multiple GPUs in a single machine. 
You can then use these models to process different 
subsets of your data set.

Model Parallel: enables you to split large models 
across multiple GPUs with partial training happening 
on each. This requires syncing training data 
between the GPUs since operations are performed 
sequentially.

Distributed Data Parallel: extends the DataParallel 
class to enable you to distribute model replicas across 
machines in addition to GPUs. You can also use this 
class in combination with model_parallel to perform 
both model and data parallelism.

Replicas of your model are created and assigned to a 
GPU. Then, a subset of the dataset is assigned to that
replica

The subset for each GPU is processed and gradients 
are produced

The gradients from all model replicas are averaged 
and the result is used to update the original model

The process repeats until your model is fully trained

All rights reserved to Run:ai. 
No part of this content may be used 
without express permission of Run:ai. www.run.ai



There are three main deployment models you 

can use when implementing machine learning 

operations that use multiple GPUs. The model you 

use depends on where your resources are hosted 

and the size of your operations.

GPU servers are servers that incorporate GPUs 

in combination with one or more CPUs. When 

workloads are assigned to these servers, the 

CPUs act as a central management hub for the 

GPUs, distributing tasks and collecting outputs as 

available.

GPU clusters are computing clusters with 

nodes that contain one or more GPUs. These 

clusters can be formed from duplicates of the 

same GPU (homogeneous) or from different 

GPUs (heterogeneous). Each node in a cluster 

is connected via an interconnect to enable the 

transmission of data.

Kubernetes is an open source platform you 

can use to orchestrate and automate container 

deployments. This platform offers support for 

the use of GPUs in clusters to enable workload 

acceleration, including for deep learning.

When using GPUs with Kubernetes, you can 

deploy heterogeneous clusters and specify your 

resources, such as memory requirements. You 

can also monitor these clusters to ensure reliable 

performance and optimize GPU utilization.

Run:ai automates resource management and 

workload orchestration for machine learning 

infrastructure. With Run:ai, you can automatically

run as many deep learning experiments as needed 

on multi-GPU infrastructure.

Run:ai simplifies machine learning infrastructure 

pipelines, helping data scientists accelerate their 

productivity and the quality of their models.

Learn more about the Run:ai GPU virtualization 

platform.

GPU Server

GPU Cluster

GPU Cluster

Using Multiple GPUs with Run:ai

5

Multi GPU Deployment 
Models

Here are some of the capabilities you gain when 
using Run:ai:

Advanced Visibility: create an efficient pipeline of 
resource sharing by pooling GPU compute resources

A Higher Level of Control: Run:ai enables you to 
dynamically change resource allocation, ensuring 
each job gets the resources it needs at any given time

No More Bottlenecks: you can set up guaranteed 
quotas of GPU resources, to avoid bottlenecks and 
optimize billing.

Replicas of your model are created and assigned to a 
GPU. Then, a subset of the dataset is assigned to that
replica

The subset for each GPU is processed and gradients 
are produced

The gradients from all model replicas are averaged 
and the result is used to update the original model

The process repeats until your model is fully trained

All rights reserved to Run:ai. 
No part of this content may be used 
without express permission of Run:ai. www.run.ai


