
Customer
The École Polytechnique Fédérale de Lausanne 
(EPFL) is a research institute and university in 
Lausanne, Switzerland that specializes in natural 
sciences and engineering. EPFL manages one of 
the largest clusters of NVIDIA GPUs, with a 
mission to innovate in the fields of education, 
research, and technology transfer.



Users were frustrated that there weren’t enough 
compute resources at peak times, and research labs 
could not dedicate resources for larger experiments.



Initially, the IT team wanted to scale their 
infrastructure by creating a private GPU cloud with 
Kubernetes. However, they quickly realized they 
needed outside help. They were running 
Kubernetes but could not support sharing GPUs on 
an as-needed basis during the AI build process. 
They faced challenges managing multiple 
experiments and setting priorities between jobs and 
models. They also experienced a shortage in GPU 
resources.

 

In addition, the IT team had to coordinate GPU 
allocations manually using email and Excel sheets 
while researchers were leaving their allocated GPUs 
idle, which created more overhead.

Stats at a Glance

Orchestrating AI 
Infrastructure Resources 
at Scale for EPFL

Case Study

Learn how one of the largest research data centers in Europe uses 
Run:ai to launch their GPU as a Service and increase the efficiency of 
their compute resources with GPU virtualization.

With a large number of research labs, hundreds of researchers, and one of the largest data centers in 
Europe with over 350 NVIDIA GPUs, the IT team at EPFL needed a better way to centralize and manage their 
AI Compute infrastructure. At the time, they had 8 separate IT support teams, no common networks, lacked 
services, and did not have tools to manage nodes between the labs.

The Challenge

Pooled more than 350 GPUs on a single 
Kubernetes-based cluster



Reduce idle GPUs by more than 50%



Hundreds of researchers with self-service access 
to GPUs



Solution

Creating “GPU as a Service”

Improving the Power and Efficiency of Existing Infrastructure

Run:ai’s Kubernetes- based scheduler

EPFL turned to Run:ai to help create an efficient mass self-service solution, provide common provisioning tools, 
gain real-time visibility on GPU performance, optimize the scheduling of GPUs, and improve GPU utilization.

With Run:ai, the IT team was able to orchestrate the usage, performance, and allocation of their GPUs 
 to ensure that hundreds of researchers across different labs would get the right resources at the right time. 
Run:ai helped create a “GPU as a service” that was dynamic, easy to use, and improved access to resources. 
It freed up the IT team from manually coordinating and provisioning GPU allocations via email and 
spreadsheets. It made it easy for researchers to request and receive resources via a self-service platform, 
and to make sure their AI jobs get enough AI Compute power when pooled resources are freed.

Beyond creating a self-service platform, Run:ai helped EPFL make use of fractional GPUs, integer GPUs, and 
multiple nodes of GPUs for distributed training on Kubernetes. This enabled the IT team to get more out of 
their GPUs and allocate to each workload the amount of compute power it needs. 
 

With Run:ai’s GPU virtualization technology, the IT team was also quickly able to see which users are 
underutilizing their GPUs and adjust quotas dynamically. As a result, the number of idle GPUs decreased, 
and they were able to service more researchers and larger workloads with the same hardware. With Run:ai, 
they transformed their data center to handle AI workloads based on needs rather than capacity.

 

“Run:ai perfectly fits our needs, and we were pleasantly surprised to find that many of the Run:ai features 
solve our exact use case - hundreds of GPUs at scale managed as one very large pooled cluster. Their 
support and customer success teams have been very open, working with us to tackle any custom 
requirements based on our needs and the needs of other large-scale GPU data centers.”



For more information on how Run:ai can help you automate GPU scheduling, please visit www.run.ai

Plugs into Kubernetes clusters - simple to 
install and use




Works with any K8s “flavor” such as Red Hat 
OpenShift and Cloud managed K8s platforms 
like EKS, AKS and GKE



Manages batch jobs using multiple queues 
allowing admins to define different policies, 
priorities and requirements for each queue

Guaranteed quota and over-quota scheduling 
ensures access to provisioned resources as well 
as opportunistic access to idle GPUs


 

Gang scheduling synchronizes containers to 
share and communicate information for 
distributed workloads


 

Topology-awareness means that networking 
links & infrastructure topology are taken into 
account when scheduling workloads


